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ABSTRACT
In this supplement, we describe how to generate in silico gene

regulatory networks and profile the performance of network inference
methods using GeneNetWeaver (GNW) 3.1 Beta. For a more detailed
description, please refer to the available user manual. Also, the
section Tutorial and Help accessible in GNW aim to provide clear
and quick insight into the different functionalities offered by GNW.

Furthermore, we briefly give a description of the network inference
methods used and we provide the parameter values used for each
inference methods we applied to reconstruct the in silico benchmark
networks we generated using GNW.
Availability: GNW is available at http://gnw.sourceforge.net along
with its Java source code, user manual, and supporting data.

1 GENENETWEAVER
1.1 Topology
We generated network structure by extracting modules from the
biological interactions networks of E. coli (Gama-Castro et al.,
2011) and S. cerevisiae (Kim et al., 2003) (the source networks).
The benchmark suites A, B, and C contain 100-, 200-, and 500-
gene networks. For each network, we set the minimum number
of regulators (nodes with at least one outgoing link in the source
network) to half of the size of the extracted network. The parameter
seed has been set to random vertex and neighbor selection has
been set to random among top 50%. Networks with more than one
connected component were discarded.

1.2 Dynamical model
Network topologies are endowed with detailed dynamical models
of gene regulation. Both transcription and translation are
modeled using a standard thermodynamic approach (Ackers et al.,
1982) allowing for both independent (”additive”) and synergistic
(”multiplicative”) regulatory interactions. A detailed description
of the dynamical model used is given by Marbach et al. (2010).
First, auto-regulatory interactions were removed from the extracted
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networks before setting the dynamical model. The most important
parameters are the mRNA and protein half-lives in minutes sampled
from a Gaussian distribution N (27.5, 56.25) bounded in the
interval [5, 50], the dissociation constants sampled from a uniform
distribution [0.01, 1], and the Hill coefficients sampled from a
Gaussian distributionN (2, 4) bounded in the interval [1, 10].

1.3 Synthetic expression datasets
The next step in generating in silico benchmark networks consists
in simulating the generated in silico regulatory networks to produce
synthetic gene expression datasets. Systematic knockout and
knockdown experiments were simulated to generate steady-state
expression data. Also, 100 multifactorial perturbation experiments
were simulated to generate steady-state expression data for each
network from the benchmark suiteC. The parameters were set to the
same values used to generate the DREAM4 In Silico Challenge we
provided. Those settings also correspond to the default parameter
values provided by GNW. More specifically, we modeled molecular
noise with the coefficient of (molecular) noise term set to 0.05
(Schaffter, 2010), in addition to a model of experimental noise
observed in microarrays (Stolovitzky et al., 2005).

1.4 Gold standards and network prediction format
Performance profiling of network inference methods using GNW
requires gold standards and network predictions files to be provided.
The gold standard files can be imported to GNW using either the
format TSV, GML, DOT, or SBML1. The gold standard files in TSV
format must be formatted as follows

G0 G1 1
G0 G2 1
...
G1 G0 0
...

1 In the current version, only SBML files that have been generated by GNW
can be opened.
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Each line defines an interaction oriented from the first gene to the
second gene. The third element is 1 if the interaction is present in
the gold standard and 0 otherwise. Instead of listing the absent (0)
interactions, they can also simply be omitted. The format for the
predictions is the same as used for the DREAM challenges

G0 G1 0.98
G0 G2 0.8
...
G1 G0 0
...

As in the gold standard file, each line defines an interaction oriented
from the first to the second gene. For each interaction, a confidence
level between 0 and 1 is given that indicates the degree of belief that
the interaction is included in the gold standard. The predictions must
be listed in descending order relative to their confidence level (the
first prediction in the list being the most confident). The confidence
levels are only used to verify that the list of predictions is correctly
ordered, they do not affect the PR and ROC curves and the motif
analysis in any other way.

1.5 Evaluation of network inference methods
From a set of predictions from one or several inference
methods, GNW automatically generates a comprehensive report
including the result of a network motif analysis, where the
performance of inference methods is profiled on local connectivity
patterns (network motifs). The network motif analysis often
reveals systematic prediction errors, thereby indicating potential
ways of network reconstruction improvements (Marbach et al.,
2010). Furthermore, precision-recall (PR) and receiver operating
characteristic (ROC) curves are evaluated for each network
prediction (Prill et al., 2010). The relation between ROC and PR
curves is discussed by Davis and Goadrich (2006). The intuitive
interface of GNW allows to easily evaluate several inference
methods at a time to facilitate the comparison of their relative
performance. Evaluation results are always saved in a text file (XML
format). In addition, GNW can generate PDF reports with plots
from these data (an internet connection is required). Without internet
connection, the evaluation can still be run but no PDF report will be
created.

2 NETWORK INFERENCE METHODS
2.1 Z-score
Z-score is one of the simplest inference methods (Prill et al., 2010),
yet it has relatively high accuracy in predicting directed network
structures from knockout steady states (see Section 3.2 of the paper).
For each gene of a network, Z-score computes the mean µ and
standard deviation σ of the gene expression level from several
experiments. Then for each single-gene knockout perturbation, a
regulatory interaction is identified if the measured expression level
of a given gene is below µ−σ (enhancing regulation) or above µ+σ
(inhibitory regulation). The Matlab implementation of Z-score used
is the one provided by Pinna et al. (2010). Z-score doesn’t require
any parameters to be set.

2.2 Pinnal et al.
The algorithm developed by Pinna et al. allows to choose between
four possible different confidence matrices W to obtain the initial
predictions (Pinna et al., 2010). Here Z-score is applied on the
raw gene expression data to generate the initial predictions (WZR).
Then the method performs a refinement stage, which aims to
suppress the errors made by Z-score on cascade motifs from
knockout steady states. This improvement is achieved by reducing
the confidence initially predicted to unnecessary feed-forward edges
(Pinna et al., 2010). The parameters used are the default ones.
Especially, the threshold parameter t is set to 2 (t = 0 corresponds
to not applying the refinement stage, i.e. Z-score alone), which is
also the value Pinna et al. (2010) used to participate to the DREAM4
In Silico Challenge Size 100. Pinna et al. was best-performer in that
challenge.

2.3 Yip et al.
The original Java tool developed by Yip et al. (2010) implements
different techniques to infer gene regulations from both steady-state
and time-series data. From steady-state expression data, a noise
model is learnt to distinguish real signals from random fluctuations
(Batch 1). Ordinary differential equations (ODE) are then used to
model the change of expression levels of a gene along the time
series due to the regulation of other genes (Yip et al., 2010). Yet,
Yip et al. (2010) applied their noise model alone to participate to the
DREAM3 In Silico Challenge we provided, and their method was
best-performer in all sub-challenge of size 10, 50, and 100 genes.
Here the noise model was applied alone to predict directed networks
from knockout expression data. This part of the method developed
by Yip et al. (2010) doesn’t require any parameters to be set.

2.4 CLR
The context likelihood of relatedness (CLR) algorithm developed by
Faith et al. (2007) is an unsupervised network inference method
using mutual information as a metric of similarity between the
expression profiles of two genes. The method doesn’t require
systematic knockout gene expression data, which are not always
available in practice, to infer undirected networks. We applied CLR
1.2.2 using the provided binary for Linux. All mutual information
values were computed using 5 bins and third order B-splines (Faith
et al., 2007).

2.5 ARACNE2
Similar to CLR, the inference method developed by Margolin
et al. (2006) also uses mutual information as a metric of similarity
between the expression profiles of two genes. The method allows the
reconstruction of undirected networks from steady-state expression
data, and doesn’t require systematic knockout or knockdown
experiments. The Java implementation of ARACNE2 was used
with the provided default settings, that is, the algorithm set to
fixed bandwidth, the p-value for MI threshold to 1, the DPI
tolerance to 1, the gene filter configured with mean and cv to 0,
and the MI threshold to 0.

2.6 GENIE3
Huynh-Thu et al. (2010) decomposes the prediction of a regulatory
network between p genes into p different regression problems
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(Huynh-Thu et al., 2010). GENIE3 has the potential ability
to predict directed networks, while methods based on mutual
information or correlation can only predict undirected networks
unless additional information is used. The Matlab implementation
of GENIE3 was used with the Random Forests procedure, the
parameterK set to the square root of the number of input genes, and
the number of trees grown in an ensemble set to 1000 (Huynh-Thu
et al., 2010).
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