
Section Microtechnique

Master Thesis

Scalable Reverse Engineering of Nonlinear
Gene Networks

by Thomas Schaffter

Professor Dario Floreano, EPFL
Advisors Daniel Marbach, EPFL

Claudio Mattiussi, EPFL
Expert Sven Bergmann, UNIL

Laboratory of Intelligent Systems

Lausanne, January 18th, 2008

.

EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE
POLITECNICO FEDERALE DI LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE

FACULTE SCIENCES ET TECHNIQUES DE L’INGENIEUR

LABORATORY OF INTELLIGENT SYSTEMS (LIS)
CH - 1015 LAUSANNE

PROJET DE MASTER

Titre: Scalable Reverse Engineering of Nonlinear Gene Networks
Candidat(s): Thomas Schaffter (MT)

Professeur: Dario Floreano

Assistant 1: Daniel Marbach Assistant 2: Claudio Mattiussi

Donnée & travail demandé:

The effective reverse engineering of gene regulatory networks is one of the great challenges of systems biology and is expected to

have substantial impact on the pharmaceutical and biotech industries in the next decades. A gene network is formed by regulatory

genes, which code for proteins that enhance or inhibit the expression of other regulatory and/or non-regulatory genes, thereby

forming a complex web of interactions. The goal of reverse engineering is to automatically identify such a network from

experimental data.

In this project, we explore an evolutionary reverse engineering approach for gene networks of medium size. As benchmark we use a

dataset of a fifty-gene in silico network, which has been published as an international reverse engineering competition for the second

DREAM conference (Dialogue for Reverse Engineering Assessments and Methods). Our goal is to provide an accurate

reconstruction of the gene network using biologically plausible dynamical models. With this kind of nonlinear models, traditional

methods of system identification are generally not applicable. Hence, the reverse engineering algorithm must rely on stochastic

global search methods and a "divide-and-conquer" strategy to achieve scalability.

Remarques:

Un plan de travail (Gantt chart) sera établi et présenté à l'assistant responsable avant la fin de la deuxième semaine.

Une présentation intermédiaire (10 minutes de présentation et 10 minutes de discussion) de votre travail aura lieu le 24 octobre 2007

à partir de 13 heures. Elle a pour objectifs de donner un rapide résumé du travail déjà effectué, de proposer un plan précis pour la

suite du projet et d'en discuter les options principales.

Un rapport, comprenant en son début l'énoncé du travail (présent document), suivi d'un résumé d'une page, devra être rédigé. La

page de résumé (A4, seulement recto) doit comporter, en plus de la description du projet et de 1 ou 2 figures représentatives, la date,

le nom du laboratoire, le titre du projet, son type (projet de master), vos noms et prénoms ainsi que ceux du professeur responsable et

des assistants. Dans le rapport, l'accent sera mis sur la description des expériences et la présentation des résultats obtenus. Une

version préliminaire du rapport sera remise à l'assistant au plus tard 10 jours avant la date de rendu final. La version finale sera

remise au secrétariat de votre section le 18 janvier 2008 avant 12 heures en 3 exemplaires signés et datés.

Une défense de 30 minutes (environ 20 minutes de présentation et démonstration, plus 10 minutes de réponses aux questions) aura

lieu dans la période du 4 au 15 février 2008. Vous serez jugé sur les résultats de votre projet tels qu'ils seront présentés dans votre

rapport et lors de votre défense.

Tous les documents en version informatique, y compris le rapport (en version source et en version PDF), la page de résumé au

format PDF et le document de la présentation orale, ainsi que les sources des différents programmes doivent être gravés sur un

CD-ROM et remis à l'assistant au plus tard lors de la défense finale.

Le professeur responsable: L'assistant responsable:

Signature: Signature:

Dario Floreano Daniel Marbach

Lausanne, le 19 septembre 2007

.

LIS Abstract 18.01.08

Scalable Reverse Engineering of Nonlinear Gene Networks

Thomas Schaffter, Section Microtechnique

Advisors: Daniel Marbach, Claudio Mattiussi
Professor: Dario Floreano

Introduction

Current advanced molecular biology
techniques provide gene expression levels
(mRNA levels) of selected, if not all, genes
of an organism. In such aggregate, expres-
sion levels of one gene are mediated by the
presence of specific proteins and metabo-
lites produced by other genes. Gene Regu-
latory Networks include such structures,
where a node (gene) is linked by a few
number of interactions with others genes
(Fig. 1). Knowledge of gene-gene relation-
ships in networks, and so having possibi-
lity to act and control them is important
in biotech and pharmaceutical industries.

Methodology

From mRNA measurements methods
based on Bayesian Networks, statistics
and information theory-based or linear dy-
namical systems offer the possibility to
reverse-engineer underlying GRNs, i.e. to
find the topology or wiring of such net-
works. The method described here is
based on single-gene optimization, which
allows to process large scale non-linear
GRNs (> 50 genes).

From experimental datasets, the algo-
rithm generates several different in sil-
ico GRNs and simulates them to produce
datasets comparable to given ones. This
loop is repeated many times until the al-
gorithm finds an in silico network that fits
the experimental data (Fig. 2). CMA-ES
is used as Evolutionary Algorithm, which
is faster than classical Genetic Algorithms.

Results

Efficiency of the algorithm is assessed on
an in silico 5 gene network with 6 gene-
gene interactions. The present process
recovers successfully all connections with
correct type and detects only one false
positive. Concerning computation time,
one say which one needs 6-8 hours to in-
fer this entire network, where present one
needs only about one minute in the best
cases to do this.

Future work

The next stage is to evaluate this algo-
rithm on a gold standard: the 50 gene
network used as challenge for the second
DREAM conference. Using Precision-Re-
call and ROC curves, obtained results can
be directly compared with published ones
of participating teams.

.

Contents

1 Introduction 1

2 Scalable Reverse Engineering of Nonlinear Gene Networks 5
2.1 Preface . 5
2.2 Definitions and Problem to solve . 7
2.3 Reverse Engineering Algorithm . 8

2.3.1 Overview . 8
2.3.2 Gene Model . 9
2.3.3 Algorithm . 10

2.4 Theory of CMA-ES . 13
2.4.1 Generalities . 13
2.4.2 The Multivariate Normal Distribution 13
2.4.3 Initialization . 14
2.4.4 Sampling individuals . 14
2.4.5 Selection and Recombination . 15
2.4.6 Adaptation the Covariance Matrix 15
2.4.7 Limited memory version of CMA-ES, L-CMA-ES 15

2.5 Apply CMA-ES to Reverse Engineering Algorithm 16
2.5.1 Implementation of CMA-ES used 16
2.5.2 Individuals . 16
2.5.3 Bound Evolvable Parameters . 16
2.5.4 Evaluation of Evolved Genes . 17
2.5.5 Fitness and Prediction Error . 18

3 Efficiency of the Algorithm on a Five Gene Network 21
3.1 Goal . 21
3.2 In Silico Target Network . 21
3.3 In Silico Target Datasets . 22
3.4 Calibration of CMA-ES parameters . 23

3.4.1 Procedure . 23
3.4.2 Evaluation of Population size . 23
3.4.3 Evaluation of Initial step-length 25
3.4.4 Evaluation of Recombination strategies 28
3.4.5 Summary of best CMA-ES parameters found 29

Scalable Reverse Engineering of Nonlinear Gene Networks

3.5 Results . 30
3.5.1 Raw data . 30
3.5.2 Weights threshold . 35
3.5.3 Single-gene optimization of G0 . 36
3.5.4 Single-gene optimization of G1 . 36
3.5.5 Single-gene optimization of G2 . 38
3.5.6 Single-gene optimizations of G3 and G4 39

4 Conclusions 41

5 Acknowledgements 43

A Wyrd Handbook 49
A.1 Installation . 49

A.1.1 Requirements . 49
A.1.2 Compilation from sources . 49

A.2 Introduction . 50
A.3 Quickstart . 50

A.3.1 User Interface . 50
A.3.2 Project Id and filenames convention 51

A.4 Generation of Gene Regulatory Networks 52
A.4.1 Preface . 52
A.4.2 Broken repressilator and Grntest 52
A.4.3 Random networks . 53
A.4.4 XML structure for Wyrd GRNs files 55
A.4.5 Initial mRNA concentrations for Time Series experiments 55

A.5 Simulation of GRNs . 56
A.5.1 Introduction . 56
A.5.2 Time Series datasets . 57
A.5.3 Steady-States datasets . 60

A.6 Reverse Engineering of GRNs . 64
A.6.1 Introduction . 64
A.6.2 Prepare inputs . 64
A.6.3 Initialization of parameters . 65
A.6.4 Run GRNs Reverse Engineering process 67
A.6.5 Management of CMA-ES . 67
A.6.6 Results and output files . 70

A.7 Visualization of Wyrd results . 71
A.8 Doxygen Documentation . 71

B WyrdReport Handbook 73
B.1 Introduction . 73
B.2 Quickstart . 73

B.2.1 WyrdReport GUI - wrgui . 73
B.2.2 HTML reports . 76
B.2.3 Advices . 78

B.3 Using Matlab tools in command lines . 79
B.3.1 Instance of wtInitCore . 79

2

Contents

B.3.2 WyrdReport . 80
B.3.3 Others WyrdReport scripts . 80

B.4 Precision-Recall and ROC Matlab scripts 80

C Wyrd Settings file 85

D In silico Target Datasets of Grntest 89
D.1 grntest ss wt.csv . 89
D.2 grntest ss ko.csv . 89
D.3 grntest ss hz.csv . 89
D.4 grntest ts.csv . 89

E Wyrd Class Dependencies 93

F Matlab Scripts Documentation 95
F.1 bestRun . 97
F.2 computePR . 98
F.3 confidence . 99
F.4 get . 101
F.5 printDistances . 102
F.6 printGrnTopology . 103
F.7 printSquareError . 104
F.8 printTimeSeries . 105
F.9 resizeProgressBar . 106
F.10 set . 107
F.11 wrInitCore . 108
F.12 writeGrnPart . 109
F.13 writeIndex . 110
F.14 writeMenu . 111
F.15 writePredictions . 112
F.16 writeSsPart . 114
F.17 writeTsPart . 115
F.18 wyrdReport . 116

3

Scalable Reverse Engineering of Nonlinear Gene Networks

4

Chapter 1: Introduction

1

Introduction

Current advanced molecular biology techniques provide gene expression levels (mRNA
levels) of selected, if not all, genes of an organism. In such aggregate, expression levels of
one gene are mediated by the presence of specific proteins and metabolites produced by
other genes [1]. Therefore, mRNA levels of most of the genes are directly or indirectly
affected by some other genes which are in turn regulated by some other ones. Biological
systems of such structure are gene regulatory networks where a node (gene) is linked
by a few number of connections (excitatory or inhibitory gene-gene interaction) to oth-
ers genes (Figure 1.1). Knowledge of gene-gene relationships in networks, and so having
possibility to act and control them is important in biotech and pharmaceutical industries.

Figure 1.1 In gene regulatory networks, nodes represent genes and directed connections
the excitatory or inhibitory gene-gene interactions.

From mRNA measurements, reverse engineering algorithms offer the possibility to in-
fer the underlying gene regulatory networks, i.e. to found the topology or wiring of such
networks. Algorithm may differ by several ways as the required experimental data or
still the framework of the process used. One of the first methods to solve the present
problem is the use of Bayesian Networks (BN). The key features of BN remain in a
graphical compact and intuitive representation of a probability distribution, captures of
causal relationships between genes, deals with noisy data and integration of prior know-
ledge as sparseness of biological networks. [6]

1

Scalable Reverse Engineering of Nonlinear Gene Networks

Statistics and information theory-based is second kind of algorithms widely used and
represents an other ways to study gene regulatory networks. Features of networks are
selected in order to compute correlation between them and then to classify genes with
similar expression pattern in different classes. However, measurements of mRNA levels
are often noisy and contain thousands of features with many of them not related to
classes defined. Therefore, results are very dependent on the features selection. [32]

A third type of reverse engineering algorithms use linear dynamical systems to describe
the problem. Very popular, this method associates models to genes that describes mRNA
production rates. Systems of coupled differential equations governing entire networks are
built and solved using systems identification theory [17], e.g. linear regression. Limit is
that the network must be linear and thus differential equations approximated by first
order models. Identification algorithms solve deterministic and quickly such linearised
systems, so methods based on linear dynamical systems allow to infer large scale gene
regulatory networks. [1], [5], [6], [7], [8].

However, it is known that mRNA production rates of genes are strongly non-linear
and thus applications of linear dynamical systems algorithms are only approximations of
behaviours of regulatory network. And in place to linearise systems of coupled differen-
tial equations to be able to solve it quickly, Evolution Algorithms as Genetic Algorithms
(GA) can be implemented to generate candidate solutions for our reverse engineering
problem. Still yet rarely applied, this approach is the one studied in [19] where a novel
biomimetic representation called Analog Genetic Encoding (AGE) is employed, which
can be used with non-linear gene models where analytical approaches or local (gradient-
based) optimization methods are not appropriate.

Present research is based on this last class of algorithms. This leads to a new state-
of-the-art reverse engineering algorithm which offers the possibility to infer large scale
non-linear gene regulatory networks.

Chapter 2 introduces the reader to this new state-of-the-art reverse engineering algo-
rithm. Some definitions are given as the description of the goal to reached. The complete
frameworks of processes used are detailed step by step, from simulation of in silico net-
works to produce gene expression levels data to the reverse engineering process itself. In
Chapter 3, present algorithm is applied to an in silico five gene network and results are
discussed. Finally, Chapter 4 presents the conclusions based on results found in Chapter
3. As the five gene network used to evaluate efficiency of the developed algorithm is not
a gold standard, a future application on the fifty gene network challenge made available
for the second DREAM conference (Dialogue for Reverse Engineering Assessments and
Methods) is introduced.

2

Chapter 1: Introduction

All results are obtained with a C++ implementation of the reverse engineering algo-
rithm presented in this research. The code name of this program is Wyrd1. Annexe
A contains an handbook to guide the user through all operation offered by Wyrd as
creation, simulation or reverse engineering of regulatory networks. To quickly analyse
results generated by Wyrd, a set of Matlab scripts are centralized in one easy to use.
Output is an HTML report with network topologies, presentation of results in tables,
time series courses, etc. These Matlab tools are introduced to the user in Annexe B.

1In Norse mythology, Wyrd means the destiny which governs every creature or object of the nine
worlds. The destiny is an infinite web where each wire is a creature or an object of the nine worlds.
Wyrd is chosen by analogy to wiring of gene regulatory network.

3

Scalable Reverse Engineering of Nonlinear Gene Networks

4

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2

Scalable Reverse Engineering of
Nonlinear Gene Networks

2.1 Preface
The goal of reverse engineering is to establish and quantify causal relationships be-

tween all genes of a biological regulatory network from experimental measurements. The
challenge is to recover the topology, or wiring, of such biological network by a reverse
engineering approach. Figure 2.1 illustrates the process used.

Figure 2.1 Schema of the reverse engineering used. From experimental target datasets
obtained after several gene perturbations experiments and measurements of mRNA ex-
pression levels of all genes of a biological network, the reverse engineering algorithm is
applied. It generates in silico evolved networks, simulates them to produce datasets and
compares in silico and target datasets. If they do not fit, the algorithm changes the
gene model’s parameters and gene-gene interactions to obtain new evolved networks. An
Evolutionary Algorithm is used to handle this, where the fitness is the distance between
evolved and target datasets. After several generations, an evolved network that gen-
erates similar data as the experimental ones is found. The dotted line highlights the
fact that the network found is not necessary the target one searched if the problem is
under-determined.

5

Scalable Reverse Engineering of Nonlinear Gene Networks

Current techniques allow to measure mRNA concentration levels of thousands bio-
molecules of an organism at the same time. From a set of genes and by applying pertur-
bations on their production rates (gene perturbations), a dataset of mRNA concentration
levels can be built from measurements of the expression levels of all genes of this set.
Steady-states and times series are two types of widely used datasets. The first one con-
sists to modify the production rate of one or several genes in the network and to measure
expression levels of all genes once the system reaches steady-state. Knockout or null-
mutant perturbations set to zero transcription rate of a single gene, when heterozygous
perturbations divide the rate by two. Time series experiments are also used to study a
wide range of biological systems. This type of experiments consists to measure varia-
tions of production rates of all genes during a given time. The measures are taken at
predefined time points and the most of the time, the number of points is small (eight
time points or fewer in most cases). Evolution of the variations of the production rates
depend largely on the initial conditions (initial mRNA expression levels of all genes).

From experimental datasets of a network of several genes, the goal is to recover the
underlying relationships between them. These target datasets are given as input for the
Gene Regulatory Network (GRN) reverse engineering algorithm. In this algorithm, the
genes are characterised by a model which is defined by few parameters. An example of
non-linear model is the standard sigmoid model with two parameters per gene as widely
used in this work. All gene-gene interactions are directed and defined by weights. To
prepare reverse engineering process, the algorithm begins with generating a first initial
in silico network, most of the time with random values for the gene model’s parameters
and weights.

Then, this initial network is simulated to produce the same kind of datasets as the
experimental target datasets associated to the real biological network given as input for
the reverse engineering algorithm. So steady-state and/or time series are computed for
the in silico evolved network and are compared to target datasets. If the two evolved
and target datasets are very different (normally the case if the initial evolved network is
a random one), evolved network is not yet the searched one. Parameters of this evolved
network are changed through the use of an Evolutionary Algorithm. With modifying
the gene model’s and weight’s values, a new fully specified evolved network is defined
and simulated to produce datasets which are again compared to the experimental target
datasets.

After several pathways of the right loop of Figure 2.1, the reverse engineering al-
gorithm generates a gene regulatory network which matches the experimental target
datasets. The algorithm ends and considers that the network with the best fit found is
the underlying one searched. However, if the problem is under-determined (not enough
information about the target network), solutions are not unique and several different
gene regulatory networks that generate the same data as the target datasets exist. In
this case, additional criteria should be introduced, for example the notion of sparseness
in networks in order to discriminate some topologies found by the reverse engineering
algorithm.

6

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2.2 Definitions and Problem to solve
A gene regulatory network is composed of several genes and multiple gene-gene interac-

tions. In biological organisms, each gene is characterised by a mRNA concentration level
or gene expression level. This level of mRNA concentration can be measured in thousand
of genes at the same time and represents the state of a gene network. For one gene, the
variation of mRNA concentration level is given by:

dxi
dt

= Fi(x)− δixi (2.1)

where Fi() is the gene production rate defines as the product of the maximum tran-
scription rate vmax,i with the gene model used for gene i. x the state vector containing
all gene expression levels, δi a decay constant and xi the mRNA expression level of gene i.

For an entire network of size N , the system is composed of N coupled differential
equations:

dx1

dt
= F1(x, t)− δ1x1 (2.2)

dx2

dt
= F2(x, t)− δ2x2 (2.3)

... (2.4)

dxN
dt

= FN(x, t)− δNxN (2.5)

In vectorial notation and supposing that all genes have the same model, the system of
N coupled differential equations that characterizes the production of gene mRNA con-
centration levels of the entire gene regulatory network is:

dx

dt
= F (x, t)− δx (2.6)

with

x = [x1, x2, ..., xN]T (2.7)

δ = [δ1, δ2, ..., δN]T (2.8)

δ is constant and x is the state vector of Equation 2.6.

The vast majority of reverse engineering algorithms use Identification tools with an
approximation of the first order of the system of differential equations given in Equation
2.6. This deterministic way to solve the problem allows to reverse engineer large gene
networks. Hovewer, it is known that biological behaviours of genes are strongly non-
linear, whereas such algorithms are restricted to use linear gene models.

The new algorithm presented here is actually one of the rare that allows to reverse
engineer non-linear and large gene regulatory networks.

7

Scalable Reverse Engineering of Nonlinear Gene Networks

2.3 Reverse Engineering Algorithm

2.3.1 Overview

The idea of this research is to use Evolutionary Algorithms (EAs) to generate candi-
date solutions (fully specified genes) for the present reverse engineering problem. EAs
are population-based optimization algorithms and use some mechanisms inspired by
biological evolution as the reproduction, mutation, recombination and selection. Seve-
ral EAs have been developed as Genetic Algorithms, Genetic programming, Evolution
strategy or still Learning classifier system. As classic Genetic Algorithms take generally
lot of time to solve systems of higher dimensions due to the fact that a great number of
solutions are tested, the choice of the Evolutionary Algorithm used in this work fell on
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [13], [12], [11], [10]. We
use a variation of CMA-ES implemented by Knight and Lunacek [16].

In [19], Marbach applies also EAs and uses the same key steps as introduced in Figure
2.1. In his work, a given network is evolved as a whole. To do this, all the parameters of
the network are included in the phenotype. Thus, the dimension of the system to solve
is:

N2 +N · number of gene model′s parameters (2.9)

where the N2 first parameters are the elements of the weights matrix w which represent
the topology and the interaction strengths of the gene network. In addition, there are
still N times the number of parameters of the gene model used. So, the total dimension of
the problem for a five gene network using the standard sigmoid model (two parameters,
α and β) is 35.

In this current research, the main part of the idea is to break down the system of
N coupled equations 2.6. This is equivalent to optimize gene by gene the regulatory
network. System 2.6 is divided into N equations of the following form:

dxi
dt

= Fi(x̂, t)− δix̂ (2.10)

where x̂ contains the measurements of all gene expression levels. With the two para-
meters of the sigmoid model, the dimension of each gene optimization is:

N + number of gene model′s parameters (2.11)

It is much more easier and faster to solve an equation of dimension proportional to N , N
times than to solve once a system of dimension proportional to N2.

8

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2.3.2 Gene Model

As it is known that the behaviours of genes are strongly non-linear and thanks to the
fact that the present reverse engineering algorithm handles non-linear gene regulatory
networks, a non-linear gene model is used. The model chosen and widely used throughout
this research and other ones is the standard sigmoid model:

fσi (z) = σ(αi ·
∑
j∈Ri

wijxj + βi), with σ(y) =
1

1 + e−y
(2.12)

j ∈ Ri is the set of all genes, wij are elements of the square weights matrix w which
describes the topology or wiring of the entire network. wij defines the weight or strength
of the interaction from gene j to gene i. If wij > 0, the interaction is excitatory, else if
wij < 0, inhibitory and otherwise wij = 0 if there is no interaction between gene i and
j. α is a multiplicative constant for the regulatory activity (steepness of sigmoid). β
determines basal transcription (where the sigmoid crosses the y-axis). Influences of α
and β on the gene transcription rate are shown in Figure 2.2. For (a) and (b), x-axis is
proportional to the sum

∑
j∈Ri

wijxj or the influence of all genes that have an outgoing
connection towards gene i. y-axis represents the mRNA normalized transcription rate
which is always positive or zero.

Output values of the sigmoid model are included in interval [0, 1]. As the mRNA
production rate for the gene i is defined by

production rate Fi(z) = vmax · fσi (z) (2.13)

so, production rates are always comprised between [0, vmax].

(a) (b)

Figure 2.2 Influence of (a) α and (b) β on the gene transcription rates in the standard
sigmoid model. α is a multiplicative constant for the regulatory activity (steepness of
sigmoid) and β determines basal transcription (where the sigmoid crosses the y-axis).

9

Scalable Reverse Engineering of Nonlinear Gene Networks

2.3.3 Algorithm

Initialization

The basic idea of this reverse engineering algorithm is to optimize one-by-one the genes
of the regulatory network. Before optimizing the first gene, the reverse engineering algo-
rithm generates a random network of the same size as the target one. Random networks
have all gene parameters and the matrix w set randomly. As sparseness is a property
of many biological networks [29], elements of w can be to set to 0 in place of random
values. So the network starts with no gene-gene interaction.

At this point, a fully specified in silico random network is available as initial point for
the reverse engineering algorithm.

Simulation of Evolved Genes

During a single-gene optimization, only the parameters of one gene and its incoming
interaction’s weights are estimated. This notion is introduced later in Section 2.5.2.
So only these parameters change during the evolution process handled by CMA-ES al-
gorithm. To evaluate new evolved solutions generated by CMA, the network must be
simulated in order to produce in silico datasets similar to experimental target dataset
given as input. As only the parameters of a single-gene change, only the gene that is
beeing evolved is simulated rather than the entire network. This saves computation time.

Three types of steady-states experiments that are widely used in the literature and
by the present reverse engineering algorithm: wild type (no perturbation), knockout
or null-mutant (single-gene perturbation, vmax,i = 0) and heterozygous steady-states
(single-gene perturbation, vmax,i is halfed). i is the index of the gene perturbed. Pro-
duce steady-state dataset for the gene i consists to solve Equation 2.10 with dx

dt
= 0,

i.e. to find its mRNA concentration levels xi when the steady-states are reached. For
example, the following wild type target dataset of a five gene network can be given as
input for the reverse engineering algorithm.

G0 G1 G2 G3 G4
wild type x̂wt0 x̂wt1 x̂wt2 x̂wt3 x̂wt4

Table 2.1 Experimental target wild type steady-state dataset of a five gene network.
Elements are measured mRNA concentration levels of the underlying target gene regu-
latory network when it reaches a steady-state without external gene perturbation.

To generate steady-state dataset associated to gene i, Equation 2.14 must be solved.
The solution xi is the searched value xwti in wild type experiment. In implementation of
the reverse engineering algorithm, the Multidimensional Root-Finding of GSL1 is used
to solve Equation 2.14.

dxi
dt

= 0 = Fi(x̂)− δixi (2.14)

1The GNU Scientific Library

10

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

With the hypothesis that gene regulatory networks do not have self-interaction, i.e.
wii = 0 in w (used to simplify time series integration as presented later), Fi(x̂) is inde-
pendent of xi due to the fact that wiixi = 0 in the sum of Equation 2.12, and thus xi of
the term δixi can be easily retrieved.

The second type of datasets used are the time series experiments. From initial state of
gene regulatory network, the expression level is measured (mRNA concentration level)
at fixed points in time. In example of the five gene network, a time series experiment
with 7 time points is given in Figure 2.3 (a).

G0 G1 G2 G3 G4

t0 xts,t00 x̂ts,t01 x̂ts,t02 x̂ts,t03 x̂ts,t04

t1 xts,t10 x̂ts,t11 x̂ts,t12 x̂ts,t13 x̂ts,t14

t2 xts,t20 x̂ts,t21 x̂ts,t22 x̂ts,t23 x̂ts,t24

t3 xts,t30 x̂ts,t31 x̂ts,t32 x̂ts,t33 x̂ts,t34

t4 xts,t40 x̂ts,t41 x̂ts,t42 x̂ts,t43 x̂ts,t44

t5 xts,t50 x̂ts,t51 x̂ts,t52 x̂ts,t53 x̂ts,t54

t6 xts,t60 x̂ts,t61 x̂ts,t62 x̂ts,t63 x̂ts,t64

Figure 2.3 Example of time series data where the gene G0 is the current evolved one.
Element xts,t00 means the gene expression level of gene G0 in time series experiment at
time point t0. As only the parameters of this gene are modified and so only this gene is
simulated to generate time series data, all other time series gene expression levels are set
with their values in the target time series dataset.

Figure 2.3 helps to explain how one gene is simulated to produce time series data. Let
gene G0 be the current gene that is being optimized. As the parameters of other genes
are not modified during optimization of G0, only G0 is simulated to generate its time
series data, i.e. the column under the label “G0” in Figure 2.3. To generate time series
data, Equation 2.15 must be solved to found expression level xi of evolved gene i.

dxi
dt

= Fi(x̂)− δixi (2.15)

For each time point, we must compute the expression level of gene G0 by integrating
Equation 2.15. First, initial mRNA concentrations of all genes are set with their value
in the target time series dataset given as input for the reverse engineering algorithm. If
we will integrate gene expression level of G0 from t0 to t1 to obtain mRNA level of G0
at time point t1, initial conditions are set with values of the target dataset as:

x̂ = [x̂ts,t00 , x̂ts,t01 , x̂ts,t02 , x̂ts,t03 , x̂ts,t04]T (2.16)

Equation 2.1 is only depending on x0 which is the gene expression level searched of G0
at different time points. However, the time step used for the integration of G0 expression
levels between t0 and t1 is not (t1−t0) but is smaller. A time step used can be for example
t1−t0

5
. To compute expression levels of all not evolved genes that are used to set initial

concentration of Equation 2.1, a linear interpolation between two points is made, e.g.
between x̂ts,t01 and x̂ts,t11 to produce mRNA levels of gene G1 at time points multiples of

11

Scalable Reverse Engineering of Nonlinear Gene Networks

t1−t0
5

between t0 and t1. Figure 2.4 illustrates the principle of the linear interpolation
to produce more time points and expression levels to guide integration computation in
order to have a smaller integration step than simply (t1− t0).

Figure 2.4 Integration curve in plain line is obtained when the entire target network is
simulated. Dotted lines are first order interpolations between two given points (blue �) of
the plain line curve as given in the target time series data. Vertexes of the approximated
dotted curve are mRNA levels at different time points of the target time series dataset.
Between two given points, first order interpolation is used to produce intermediary points
(•) useful for integration process.

The mRNA levels obtained by linear interpolation between two given target point to
process integration can lead to some errors due to this approximation. Ideally, these
intermediary points (•) must be located on the plain line curve in Figure 2.4. A solution
may be to interpolate with an order larger than one between all given points (blue �).

As time series as well as steady-states datasets are generated several thousands of time
in one gene optimization, the following hypothesis is defined in order to accelerate time
series generation. Supposing there are not gene self-interaction, in others words any
activator or inhibitor interaction from a gene to itself. In this case, all elements in the
diagonal of the weights matrix w are set to 0. If the current gene evolved is the gene i,
the product wijxj with i = j in the sum belonging to Equation 2.12 is 0. So the gene
model given by this equation is independent of the variable xi, and the integration of
2.10 is more easier, and generally more faster.

After integration from t0 to t6, we have the following set of values which represents
the time series data when the gene G0 is simulated independently of others.

[xts,t00 , xts,t10 , xts,t20 , xts,t30 , xts,t40 , xts,t50 , xts,t60]T (2.17)

Optimization with CMA-ES

Before introduce the way that CMA-ES is used to process single-gene optimization, a
brief introduction to this Evolution Algorithm is presented in Section 2.4. Application
of CMA to solve current problem is introduced in Section 2.5.

12

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2.4 Theory of CMA-ES

2.4.1 Generalities

CMA-ES for Covariance Matrix Adaptation Evolution Strategy is a stochastic, popula-
tion-based, iterative optimization method belonging to the class of Evolutionary Algo-
rithms (EA). CMA allows to adapt the covariance matrix C of the multivariate normal
mutation distribution in the EA [13]. The domain defined by the mutation distribution
is used to produce new candidate solutions. Where some algorithms estimate a first
order model of the objective function (gradient), CMA means learning a second order
model which is an approximation of the inverse Hessian matrix H−1, and thus use more
the topology information of the objective function to accelerate convergence towards the
hoped global optimum. [10]

This section aims to introduce the reader to the key parameters for understanding
and putting into practice a CMA-ES. The key steps of the algorithm are highlighted
following the nomenclature and the theory presented by Hansen in [11]. More generally,
[11] contains all the developments and is an excellent tutorial for anyone wanting to fully
understand the functioning of a CMA.

2.4.2 The Multivariate Normal Distribution

A multivariate normal distribution N (m,C) is centred around its mean m ∈ Rn and
defined by its symmetric, positive definite covariance matrix C ∈ Rnxn. The covariance
matrix can be uniquely identified with the (hyper-)ellipsoid {x ∈ Rn|xTC−1x = 1} as
shown in Figure 2.5 (b). [11]

(a) (b)

Figure 2.5 (a) Isotropic normal distribution. No direction of the search space is pro-
moted as in classic Genetic Algorithm. It is also the case of CMA at generation g = 0.
σ ∈ R+ (b) C is a definite full covariance matrix. CMA uses the topology information of
the objective function contains in the covariance matrix to accelerate convergence towards
the hoped global optimum [10]. Black point is the mean m of the mutation distribution.
Objective function is represented by a fields of lines of equal density.

Principal axis of the ellipsoid are defined by the eigenvectors of C. Square modules, or

13

Scalable Reverse Engineering of Nonlinear Gene Networks

square lengths, of these axis are the associated eigenvalues of C. Figure 2.6 illustrates all
key steps of CMA algorithm. Following paragraphs described all parameters used and
their usefulness.

Figure 2.6 CMA-ES is divided into several key steps. Initialization of all parame-
ters, sample of new candidate solutions in the domain bound by the normal distribution
N (m,C), selection of the best µ individuals (according to fitness) as parents for the re-
production, update of the step-size σ and adaptation of the covariance matrix C. If the
stop criterion is met, as convergence or best fitness found, EA ends.

2.4.3 Initialization

Initially, the normal distribution associated to the covariance matrix C is isotropic and
defined by N (m,σI) where σ is the step-size, σ ∈ R+ and I ∈ Rnxn the identity matrix of
dimension n. Current geometrical interpretation of C is identical to Figure 2.5 (a). The
initial mean m for generation g = 0 can be set to desired initial value or set randomly
with a value ∈ Rn.

2.4.4 Sampling individuals

As in all population-based Evolution Strategies, a population of individuals is sampled.
Individuals are candidate solutions to the problem to solve. In CMA, new individuals
are restricted at each generation in the space Rn defined by the mutation distribution,
the normal distribution N (m,C) associated to the covariance matrix. Individuals are
taken randomly following the distribution N (m,C). So if the population size is λ with
k = 1, ..., λ, individuals are at generation g: [11]

z
(g+1)
k ∼ N(0, I) (2.18)

y
(g+1)
k = B(g)D(g)z

(g+1)
k ∼ N(0, C(g)) (2.19)

x
(g+1)
k = m(g) + σ(g)y

(g+1)
k ∼ N(m(g), σ2,(g)C(g)) (2.20)

where B(g) ∈ Rnxn is an orthogonal matrix. Columns of B(g) are eigenvectors of C(g)

with normalized lengths set to unit. D(g) ∈ Rnxn is a diagonal matrix with elements
equal to the eigenvalues of C(g). These two matrix are the product of decomposition of
C(g).

14

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2.4.5 Selection and Recombination

Selection and recombination consists to take the µ ≤ λ best individuals between all
x

(g+1)
k , k = 1, ..., λ as parents that will be used for reproduction. Individual are ranked

according to fitness as f(x
(g+1)
1:λ) ≤ f(x

(g+1)
2:λ) ≤ ... ≤ f(x

(g+1)
λ:λ) where f() is the objective

function to minimize. With these µ parents, λ offsprings are obtains by reproduction
around the mean of the mutation distribution. To update the mean m of the mutation
distribution, Equation 2.21 is used.

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ (2.21)

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ ... ≥ wµ > 0 (2.22)

where wi=1...µ ∈ R+ are positive weight coefficients for recombination. Other repro-
duction strategies exist with the use of different weights wi. If all wi = 1

µ
, Equation 2.21

calculates the mean value of the µ parents. [11]

2.4.6 Adaptation the Covariance Matrix

It is here that the step-size σ(g+1) and the covariance matrix C(g+1) are updated. Rank-
one-update of C uses a single new individual to update covariance matrix. Thus, C is re-
estimate for all new points, that needs a lot of computation. To accelerate convergence, a
rank-µ-update was developed. This method re-estimates not the entire covariance matrix
as in the rank-one-update, but used information of C of previous generations to update
it. This makes the algorithm faster but less robust and less oriented global search. [11]

2.4.7 Limited memory version of CMA-ES, L-CMA-ES

Knight and Lunacek have developed an interesting variant of the CMA-ES in order
to improve its space and time complexity [16]. Called L-CMA-ES for Limited memory
CMA-ES, the idea is that instead of re-estimate covariance matrix for all new individuals,
update only the principal directions of the search space Rn are sufficient. To make that,
m << n principal eigenvectors associated to the m greatest eigenvalues are updated.
This is equivalent to only update a sub-space of dimension m of the entire search space
of dimension n. Results show that while the total number of evaluations of the objective
function increases for m < n, the increase in computational efficiency leads to a lower
overall run time. [16]

15

Scalable Reverse Engineering of Nonlinear Gene Networks

2.5 Apply CMA-ES to Reverse Engineering Algorithm

2.5.1 Implementation of CMA-ES used

The implementation of CMA-ES used is that of Knight and Lunacek as introduced
in [16]. Some improvement have been made to increase robustness to NaN errors (An-
nexe A.6.5). The original original implementation of CMA and L-CMA-ES used has
several bug of stability, that will be corrected in a next version (J.N. Knight, personel
communication).

2.5.2 Individuals

For a single-gene optimization, dimension of the search space is given by

N + number of gene model′s parameters (2.23)

where N is the number of possible incoming interactions towards the gene evolved.
Using the sigmoid model, the set of parameters to be inferred is given by

Θi = [vmax,i, αi, βi, δi, wi1, wi2, ..., wiN] (2.24)

2.5.3 Bound Evolvable Parameters

To limit the search space of candidate solutions, all individual’s parameters are bounded.
As CMA-ES does not implement it, the following strategy is used. For each individual
generated by the Evolution Algorithm, each value of parameters is compared to its lower
and upper bounds. If one parameter p does not belong to the interval [lowerBoundOfP,
upperBoundOfP], a penalty is associated for violating the complementary space of this
interval. For one parameter, this penalty is defined as the square error between the value
of the parameter p and the violated bound. Figure 2.7 displays the evolution of the
penalty for one parameter. For an entire individual, the total penalty is the sum of all
parameter’s penalties.

Figure 2.7 Null penalty is associated to the parameter p inside its search space defined
by the bounds [-6,4]. Outside, the penalty is defined as the square error between the value
of the parameter p and its violated bound.

16

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

2.5.4 Evaluation of Evolved Genes

To differentiate good evolved genes from bad ones, the definition of the fitness is an
important key step in almost all Evolution Algorithms. The fitness is a real scalar ∈ R
which is the evaluation of the objective function with a given set of parameters Θi. In
reverse engineering algorithm, the goal is to found a gene regulatory network which pro-
duces identical datasets than the experimental ones when it is simulated. Simulation of
single-gene is introduced previously in Section 2.3.3. So, the fitness chosen is the dis-
tance between evolved in silico and target datasets (Figure 2.1). As two types of datasets
are used, some precisions for steady-states and time series distances calculation are given.

An example of structure for wild type and knockout steady-state datasets as obtained
when an five gene evolved network is simulated by the reverse engineering algorithm is
given in Table 2.2.

G0 G1 G2 G3 G4
wild type xwt0 xwt1 xwt2 xwt3 xwt4

knockout gene 0 0 xko,01 xko,02 xko,03 xko,04

knockout gene 1 xko,10 0 xko,12 xko,13 xko,14

knockout gene 2 xko,20 xko,21 0 xko,23 xko,24

knockout gene 3 xko,30 xko,31 xko,32 0 xko,34

knockout gene 4 xko,40 xko,41 xko,42 xko,43 0

Table 2.2 mRNA concentration levels for wild type and knockout steady-states
datasets as obtained when an in silico five gene network is simulated. Experiments
are presented line by line.

xko,ji is the mRNA concentration level of gene i in a knockout steady-state evolved ex-
periment where production rate of gene j = i is forced to zero as shown in the diagonal
of the knockout experiments in Table 2.2.

Difference or distance between evolved and target datasets is calculated and used as
fitness in EA. As genes are optimised one-by-one independently, only mRNA levels of
current gene evolved are taken into account in the calculation of the distance. Distance
used as fitness refers to the mean square error between target and evolved dataset as
defined by Equation 2.25.

fSs,i =

∑E(wt)
j (xwti − x̂iwt)2 +

∑E(ko)
j (xko,ji − x̂iko,j)2 +

∑E(hz)
j (xhz,ji − x̂ihz,j)2

E(wt) + E(ko) + E(hz)
(2.25)

where i is the index of the gene evolved, fSs,i its fitness and E(wt), E(ko) and E(hz)
respectively the number of experiments of the same type available (often E(wt) =
1, E(ko) = E(hz) = N). For the distance between two evolved and target time se-
ries experiments datasets, it is defined as the square error over all time points of all time
series for one gene.

17

Scalable Reverse Engineering of Nonlinear Gene Networks

fTs,i =

∑E
e=1

∑PT (e)
pt=1 [xe,pti − x̂ie,pt]2∑E
e=1 PT (e)

(2.26)

E is the total number of time series experiments and PT (e) the number of time points
in experiment e. xe,pti and x̂i

e,pt represent respectively mRNA levels of gene i in time
series experiment e at time point pt in evolved and target datasets.

If a reverse engineering algorithm uses both steady-states and time series datasets, the
total fitness ftot of a given individual is the sum of both steady-states and time series
distances.

ftot = fSs + fTs (2.27)

2.5.5 Fitness and Prediction Error

Fitness and Prediction error are used as key words and may mislead the reader on
their meanings. Figure 2.8 illustrates the difference between these two concepts.

(a) (b)

Figure 2.8 Difference between fitness and prediction error that may mislead the reader
because they are both square errors. (a) Fitness evaluates the difference between the
corresponding mRNA concentration levels of two datasets as achieved by measures on
the underlying biological network or by simulating in silico evolved networks generated by
the reverse engineering algorithm. (b) Prediction error refers to the square error between
all parameters of two solutions (individuals) in one single-gene optimization. In in silico
experiments, square error is generally computed between an evolved solution and the
target solution (if target network is available.)

The definition of fitness was given in previous section and characterises the mean square
error between an experimental target dataset and datasets as obtained by simulating an
evolved single-gene.

In application of the reverse engineering algorithm on real biological problem, there is
no way of knowing if a gene regulatory network found is the real target GRN, even if
datasets of the found and target networks are identical. As briefly mentioned in Section
2.1, several different networks can be found and generate the same datasets. This is due
to the fact that the problem to solve is under-determined.

18

Chapter 2: Scalable Reverse Engineering of Nonlinear Gene Networks

To evaluate the reverse engineering algorithm, in silico test cases are used. This allows
to record the prediction error between evolved and target network and to know if the
evolution goes towards the target network searched and known. As reverse engineering
algorithm optimizes gene-by-gene, the prediction error is defined as the sum of the square
errors between all parameters of two genes. For the individual given by Equation 2.24,
the square error is given by:

Prediction errori = [vmax,i − vtarmax,i]2 + [αi − αtari]2 + ...+ [w0i − wtar0i]2 + ... (2.28)

19

Scalable Reverse Engineering of Nonlinear Gene Networks

20

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

3

Efficiency of the Algorithm on a
Five Gene Network

3.1 Goal
To evaluate the efficiency of the reverse engineering algorithm introduced in Chapter

2, an in silico five gene regulatory network is built and used as target network. This net-
work is simulated to produce steady-states and time series experiments, that will given
as input for the reverse engineering algorithm. From these data, it will try to recover
the wiring of the target in silico gene network.

Experiments are described step-by-step and results obtained are presented and dis-
cussed at every stage. This is used to define correct hypothesis on which next steps of
experiments are based.

As the in silico target network is available which is not the case in biological experi-
ments, it is possible to compare found and target solutions to define the efficiency of the
reverse engineering algorithm. Results show that the process recover successfully the six
gene-gene interactions of the five gene test case with only one false positive.

3.2 In Silico Target Network
Rather than generate a random network, the five gene network used as test case is

built by hand. Indeed, random networks have often bad dynamics. For this reason, we
use a network built manually. The in silico target network used in the current evaluation
of the reverse engineering algorithm is defined in Figure 3.1.

As a property of many gene regulatory networks is the sparseness, few gene-gene inter-
actions are set in target network. In total, three excitatory and same number of inhibitory
connections are defined. All genes have two incoming or outgoing interactions, except
genes G0 and G1 that have three.

21

Scalable Reverse Engineering of Nonlinear Gene Networks

In Silico Target Network (Grntest)

vmax δ w1

g0 0.10 0.01


0 0 0 −0.5 0
1 0 0 −2 0
−2 0 0 0 4.5
0 0 0 0 0
0 3 0 0 0


g1 0.15 0.05
g2 0.20 0.10
g3 0.25 0.15
g4 0.34 0.20

Table 3.1 Grntest is used as target network throughout this chapter to illustrate the
efficiency of the reverse engineering algorithm introduced in Chapter 2. All genes follow
the standard sigmoid model (Section 2.3.2). They are described by four parameters: the
maximum transcription rate vmax, a multiplicative constant for the regulatory activity
(steepness of sigmod) α, the basal transcription (where the sigmoid crosses the y-axis) β
and a decay constant δ. All α and β are set respectively to 1 and 0 in this experiment.

3.3 In Silico Target Datasets
In biological case, only experimental mRNA concentration levels are available in the

form of datasets to reverse engineer underlying networks. So the first thing to do is
to simulate the in silico target network to produce different type of datasets. For this
experiment, the following noiseless datasets have been generated from Grntest.

• 1 wild type steady-state experiment

• 5 knockout steady-states experiments

• 5 heterozygous steady-states experiments

• 4 time series experiments with different initial conditions, each one with 21 time
points

1Element wij in the ith line, jth column of the weights matrix w represents the excitory (wij > 0)
or inhibitory (wij < 0) interaction from gene j to gene i.

22

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

The theory used to generate these datasets is the one presented in Section 2.3.3. To
generate them from Grntest using Wyrd2, section “Simulation of GRNs” of the Wyrd
Handbook can help the user in this process (Annexe A.5). Target datasets generated by
Wyrd and used to reverse engineer Grntest are available in Annexe D.

3.4 Calibration of CMA-ES parameters

3.4.1 Procedure

Before trying to recover any target gene regulatory networks, parameters of the Evo-
lution Algorithm used to process single-gene optimization must be calibrated in order to
obtain the best performances. To evaluate them, the gene G0 of the Grntest network is
optimized from target datasets described in previous section. For each different parame-
ters of CMA-ES, G0 is optimized 50 times. The calibration procedure starts with the
following values of key parameters of CMA to evaluate.

1. Total number of evaluations (50000)

2. Population size λ (10)

3. Initial σ (1)

4. Recombination strategy (superlinear)

For all estimations of these parameters, the total number of evaluations made by
CMA is fixed to 50000. The value of the population size λ is the first estimated. For
the best λ found, second parameter σ0 is in turn evaluated, etc. For each value of
one parameter, evolution of the fitness and prediction errors through generations of the
Evolution Algorithm are displayed.

3.4.2 Evaluation of Population size

In CMA-ES, the total number of solutions evaluated during optimization is defined by
the parameter of total number of evalutions. So, the total number of generations done
by CMA-ES depends on the population size λ as given by:

Number of generations ∼ Total number of evaluations

Population size λ
(3.1)

At each generation, both median fitness and prediction errors of the λ individuals
forming the population of candicate solutions are recorded and plotted in Figure 3.1.
Table 3.2 highlights some interesting results.

2Wyrd is the name project of the C++ reverse engineering program implemented for the purposes
of the present Master thesis.

23

Scalable Reverse Engineering of Nonlinear Gene Networks

Figure 3.1 Number of evaluations = 50000, σ0 = 1, recombination strategy: super-
linear. For each population size, evolution of (a) the population median fitness and (b)
median prediction error through generations are shown.

24

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

λ Num. successful runs Generations Num. evaluations
10 6 612 6120
30 17 383 11490
50 20 327 16350
80 19 312 24960

Table 3.2 Influence of population size λ on results of a batch of optimizations. Second
column counts the number of runs among 50 that found a fitness under 1e-3, third the
mean generation where the value of the best fitness is found and fourth the total number
of evaluations necessary to met the best fitness found (λ·value of third column).

Looking at plots in Figure 3.1, all 50 optimizations converge towards two distinct so-
lutions with fitness equal to 0.027 and 3.6 · 10−4 for the best one. Note that single-gene
optimizations are minimizations due to the fact that fitness is the distance between tar-
get and evolved datasets which must be minimized (Section 2.5.4).

From now, analysis focus on runs that have found the best fitness. Table 3.2 highlights
the best runs. For each population size λ, the count of runs that converge towards the
best fitness found is recorded. We can see that this number increases when λ increases,
with no great difference between λ = 50 and λ = 80. This is because at each generation,
optimization with λ = 50 samples more solutions than when λ = 10 or 30, and so have
a better sample of the search space. Small populations require more generations. They
are more “blind” than evolutions with large λ. As the logic is, it is better to make
few generations with a good sample from the beginning than process “blind” operations
during a great number of generations. This can be supported by the difference of total
number of evaluations between different values of λ. Last column of Table 3.2 shows
that fewer number of evaluations are necessary to reach the best fitness found in case
where λ is small. This performance is only useful if the optimization goes towards this
optimum from the beginning (from generation 0).

Figure 3.1 displays also the evolution of median prediction error between target and
evolved solutions. In all cases, we can see than the 50 runs are divided into two cate-
gories: one part converges towards a bad solution with prediction error equal to 200, and
one part that found a prediction error equal to 4.1 · 10−4. This small prediction error
means that this last category found a solution very close of the target network. The runs
that found the best fitness are the ones that converge towards the smallest prediction
error.

From now, population size will be set to 50 because it has the highest number of runs
with fitness < 10−3.

3.4.3 Evaluation of Initial step-length

Initial value of the step-length σ0 is used to set initial mutation distribution given
by the normal distribution N (m,σ0I). Mutation distribution bounds a domain of the
search space to sample of size proportional to σ at each generation.

25

Scalable Reverse Engineering of Nonlinear Gene Networks

Figure 3.2 displays the evolution of fitness and prediction errors respectively for σ0=
1, 2, 5, 10 and 20. Table 3.3 highlights some results.

26

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

Figure 3.2 Number of evaluations = 50000, population size λ = 50, recombination
strategy: superlinear. For each population size, evolution of (a) the population median
fitness and (b) median prediction error through generations are shown.

σ0 Num. successful runs
1 20
2 7
5 6
10 6
20 4

Table 3.3 Influence on the efficiency of the CMA-ES for different values of σ0. Second
column counts the number of runs that found a fitness smaller than 1e-3. Use of σ0=1
leads to best results.

Table 3.3 shows that the number of successful runs increases when σ0 decreases. This
is due to the fact that if σ0 is large, the search space bounded by the mutation distri-
bution is large and so Evolution Algorithm has difficulty to converge, mainly towards
the optimum found by the successful runs. Value of σ0 depends on the intervals of the
parameters evolved. In this application, the largest lower or upper bound in absolute
value is 5 (weights).

Normally, a large mutation in Evolution Algorithms allows to cover better the search
space of solutions and to access to valley with optimum at the bottom that are not
achievable for an optimization which starts with a given point and a small mutation
distribution. However in Wyrd, all initial points of the 50 optimizations are different
and are sampled randomly and uniformly in the space defined by the bounds of evolvable
parameters (one between several initial points selection strategies available). This allows
to compensate the weak of small σ (weak coverage of the entire search space of solutions)
with its strength (good convergence).

Again, optimizations that lead to the best fitness found are associated to the smallest
final prediction error. For future experiments, σ0 is fixed to 1 according to these results.

27

Scalable Reverse Engineering of Nonlinear Gene Networks

3.4.4 Evaluation of Recombination strategies

Two recombination strategies are implemented in CMA-ES by Knight and Lunack and
differ in the ways to set weights wi:µ which influences updates of mean m of the mutation
distribution at each generation (Section 2.4.5). Having ordered the µ parents according
to their fitness, weights for the best one (i = 1) to the worst one (i = µ) can be set
following these two different strategies:

• Linear
wi = µ+1-i

• Superlinear
wi = ln(µ+1) - ln(i)

Figure 3.3 displays the evolution of both median fitness and prediction error respec-
tively for linear and superlinear recombination strategies. Table 3.4 highlights some
useful results.

Figure 3.3 Number of evaluations = 50000, population size λ = 50, σ0 = 1. For each
population size, evolution of (a) the population median fitness and (b) median prediction
error through generations are shown.

For a community of µ = 10 parents in descending order according to their fitness with
i = 1 is the index of the best parent, Figure 3.4 displays the difference between weights
set by the linear and superlinear recombination strategies.

28

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

Reproduction Strategy Num. successful runs
Linear 9
Superlinear 20

Table 3.4 Influence on the efficiency of the CMA-ES for two different recombination
strategies. Second column counts the number of runs that found a fitness smaller than
1e-3. Use of superlinear recombination strategy leads to best results.

Figure 3.4 Difference of weights wi:µ between linear and superlinear recombination
strategies. Weights are used in CMA-ES to update mean of the mutation distribution.

As introduced in Section 2.4.5, mean of the mutation distribution is given by:

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ (3.2)

where x
(g+1)
i:λ are all solutions contained in the population of size λ at generation (g+1).

In superlinear strategy, all parents have almost the same weights, so m is very close to
the real mean of all solutions xi:λ. There is less equity between parent’s influence on the
update of m in linear strategy, and mean of the mutation distribution can be strongly
biased in some cases. Even if no great differences in fitness or prediction errors are
observable, superlinear strategy is prefered following the results of Table 3.4.

3.4.5 Summary of best CMA-ES parameters found

From previous experiments, the following key parameters of CMA-ES are chosen to
reverse engineer the five gene network Grntest.

1. Number of optimization runs for each gene (150)

2. Total number of evaluations (50000)

3. Population size λ (50)

4. Initial σ (1)

29

Scalable Reverse Engineering of Nonlinear Gene Networks

5. Recombination strategy (superlinear)

For this configuration, one optimization run for one gene takes about 14-16 seconds
and thus the network can be inferred with only one run per gene in about one minute.
Here, optimization of all five genes each with 150 runs takes between 2h40’ and 3h20’.

3.5 Results

3.5.1 Raw data

Gene parameters

In silico target datasets generated at Section 3.3 are given as input for the reverse en-
gineering algorithm to try to recover the wiring of the in silico target network presented
in Section 3.2. This last one is also given to record the evolution of prediction errors
between found and target solutions through generations.

To optimize the first gene belonging to the five gene network Grntest, the following
solution vector or set of parameters Θi is given to the CMA algorithm:

Θi = [vmax,0, δ0, w01, w02, w03, w04] (3.3)

At the end of the Section 2.3.3, the hypothesis that genes of regulatory networks do
not have self-interaction is set and used in the implementation of the program to sim-
plify the integration process necessary to compute time series experiments. So weights
wij with i = j are always equal to zero and are not added into Θi. Finally in the cur-
rent test case, dimension of the problem to solve to reverse engineer one single-gene is six.

All parameters of the set Θi are bounded to limit the search space of candidate solu-
tions. As the target network is know, bounds are set so that all parameters of the target
network are contained in the bounded intervals. Table 3.5 present the selected lower and
upper bounds for all evolved gene parameters.

Lower bounds Upper bounds
Weights -5 5
vmax,i 0 2
δi 0.01 0.3

Table 3.5 Lower and upper bounds values for all evolved gene parameters.

After processing all genes of the network Grntest, the evolved genes presented in Table
3.6 are the best ones found. These results will be discussed more in detail in the following
sections.

30

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

f se δi vmax,i wi0 wi1 wi2 wi3 wi4

g0 3.640e-4 4.112e-4 0.010 0.096 0 0.001 0.014 -0.486 0.003
g1 1.011e-3 4.171e-1 0.042 0.123 0.989 0 -0.140 -1.370 -0.022
g2 3.130e-3 21.667 0.132 0.263 -2.063 0.209 0 3.969 2.079
g3 6.824e-9 1.288e-7 0.150 0.250 2.959e-5 4.352e-5 1e-4 0 2e-4
g4 7.173e-4 1.140e-1 0.300 0.450 0.033 3.228 0.058 -0.155 0

Table 3.6 Raw data given as output after the reverse engineering of Grntest. Columns
f refers to the fitness of the best run. Se is the prediction error. Next columns present
the values found for all gene’s parameters.

31

Scalable Reverse Engineering of Nonlinear Gene Networks

Fitness and Prediction errors plots

Figure 3.5 Each line corresponds to a single-gene optimization, there are 150 runs. (a)
Median and (b) minimum fitness, and (c) median prediction error of the population of
size λ = 50. For each gene, the best run is highlighted.

32

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

Time Series Experiments plots

33

Scalable Reverse Engineering of Nonlinear Gene Networks

34

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

Figure 3.6 Four time series experiments used to reverse engineer the five gene network
Grntest. For each experiment, integration curves • are displayed from the in silico target
time series dataset. Integration curves � are the result of the simulation of the entire
found network. This last one is built from best the solutions found in each single-gene
optimization. N points are obtained by simulating independently all genes one-by-one as
it is calculates during single-gene optimizations. In all time series experiments, single-
gene simulated are the best one found. For example, all N points in all G0’s graphs are
obtained by only simulating the best gene found for G0. All these time series plots are
automatically generated by a Matlab tool developed to quickly render HTML reports
after reverse engineering entire gene regulatory networks with Wyrd (Annexe B).

3.5.2 Weights threshold

The primary goal is to recover the topology of the underlying gene regulatory network.
Due to the numerical process, all interaction’s weights found are non-zero. To remove
weak interactions, a threshold must be defined. Choose threshold is not obvious. The
values of all weights found as presented in Table 3.6 are entered into an histogram as
shown in Figure 3.7. As a cluster of weak weights locates between w = 0 and w = 0.3,
threshold wthres = 0.3 is selected.

Figure 3.7 Histogram of all weight’s values. Weak weights (highlighted within a grey
rectangle) are clustered between w = 0 and w = 0.3. Thus threswold wthres = 0.3 is
selected to eliminate this cluster of weak weights.

35

Scalable Reverse Engineering of Nonlinear Gene Networks

3.5.3 Single-gene optimization of G0

From raw data of Table 3.6 and by applying the weight threshold wthres = 0.3, results
optimization of G0 are given in Table 3.7.

δi vmax,i wi0 wi1 wi2 wi3 wi4 f se
Target 0.01 0.1 0 0 0 -0.5 0

3.640e-4 4.112e-4
Found 0.010 0.096 0 0 0 -0.486 0

Table 3.7 Numerical results of the single-gene optimization G0. w0j < wthres are set
to zero. The unique incoming inhibitory interaction is successfully recovered.

After filtered raw weights by setting all weights w0j < wthres to zero, the only gene-gene
interaction remaining is an inhibitory connection from gene G3 successfully recovered.
The fitness of this optimization is good (< 10−3), but it is especially the small value of
the final prediction error that confirms the success of the reverse engineering on this gene.

By looking at Figures 3.5 (a), (b) and (c) associated with G0, we see that the 150 op-
timizations of this gene go towards two distinct solutions. CMA converges 85 times
to the local optimum characterized by the final fitness and mean prediction errors
(0.027,47.042). The optimizations that converge towards the better fitness also cor-
respond to the solution with the smallest final prediction error. Time series plots can
be a good way to see the correctness of the solution found. In Section 3.5.1, the found
gene G0 is simulated independently of the others genes to produce integration curves
with marker N. We can see that they fit almost perfectly the target time series data
(•). Errors of fitting occurs mainly near t = 0. It is here that the variation of mRNA
concentration levels dx0

dt
is the highest.

3.5.4 Single-gene optimization of G1

As in previous section, a table with target and found solution is built.

δi vmax,i wi0 wi1 wi2 wi3 wi4 f se
Target 0.05 0.15 1 0 0 -2 0

1.011e-3 0.417
Found 0.010 0.096 0.989 0 0 -1.370 0

Table 3.8 Numerical results of the single-gene optimization G1. w1j < wthres are set
to zero. Both incoming excitatory and inhibitory interactions are successfully recovered.

The reverse engineering algorithm recovers again successfully both incoming interac-
tions of gene G1. By looking at Figure 3.5 (a), (b) and (c) for G1, we can see that all
150 optimizations converge towards a unique solution. Although the process is a success,
the prediction error of the solution found is not excellent and target weight wtar13 = −2
is only approximated by −1.370. By returning to Figure 3.5 (c), run 62 approach a final
prediction error equal about to 0.02 around generation 190. Figures 3.5 (a) and (c),
that represent the evolution of median fitness and prediction error of the population,
are reproduced in Figure 3.8 highlighting run 62 in black. Just before generation 190,
the mediane fitness of the population increases when the mediane prediction error of the
population decreases. In both a peaking appears.

36

Chapter 3: Efficiency of the Algorithm on a Five Gene Network

(a) (b)

Figure 3.8 Figures 3.5 (a) and (c) are taken again with highlighting run 62 in black.
Orange line represent (a) the median fitness and (b) the median prediction error of the
population.

This illustrates the fact that the target solution is not necessary the best one for the re-
verse engineering algorithm where genes are processed independently from others. Here
and in all in silico cases, target steady-states and time series datasets are generated by
simulating the entire target network as a whole. In the single-gene optimization process,
all candidate genes are simulated independently from other ones to produce the same
kind of datasets than the given target ones. To do that and in time series experiments,
initial conditions for integration are set with initial mRNA concentration levels of the
target time series datasets and with points interpolated following a linear interpolation
between two given target points, as explained before in Section 2.3.3. So this approxi-
mation can lead to some errors.

This effect can be decreased, first by given target time series datasets with more time
points (often not available) or use interpolations of degree greater than 1 in algorithm.

3.5.5 Single-gene optimization of G2

δi vmax,i wi0 wi1 wi2 wi3 wi4 f se
Target 0.1 0.2 -2 0 0 0 4.5

3.13e-3 21.667
Found 0.132 0.263 -2.063 0 0 3.969 2.079

Table 3.9 Numerical results of the single-gene optimization G2. w2j < wthres are set to
zero. Both incoming excitatory and inhibitory interactions w20 and w24 are successfully
recovered. However a false positive interaction is found from gene G3 to G2.

Both incoming interactions from G0 and G4 are successfully recovered. However, a
false positive interaction from gene G3 is found this time and contributes significantly to
the high final prediction error. Here, all 150 runs converge towards this unique solution as
looking in Figures 3.5 (a) and (c). This error can be due to the reason about integration
approximation in time series computation, discussed above. It is probably not the fault of

37

Scalable Reverse Engineering of Nonlinear Gene Networks

CMA-ES and some local optimum because with 150 runs we can hope that convergence
towards the same local optimum does not occurs.

3.5.6 Single-gene optimizations of G3 and G4

δi vmax,i wi0 wi1 wi2 wi3 wi4 f se
Target 0.15 0.25 0 0 0 0 0

6.824e-9 1.288e-7
Found 0.150 0.250 0 0 0 0 0

Table 3.10 Numerical results of the single-gene optimization G3. w3j < wthres are
set to zero. No incoming gene-gene interaction are found by the reverse engineering
algorithm as it is the case in reality. Final fitness and prediction error are both excellent.

δi vmax,i wi0 wi1 wi2 wi3 wi4 f se
Target 0.2 0.3 0 3 0 0 0

7.173e-4 1.140e-1
Found 0.300 0.450 0 3.22 0 0 0

Table 3.11 Numerical results of the single-gene optimization G4. w4j < wthres are set
to zero. The unique incoming excitatory interaction from G1 is well recovered.

In optimization of gene G3, algorithm converges towards two distincts solutions. The
best one shows that with its fitness equal to 6.8 · 10−9 and especially its prediction error
equal to 1.2 · 10−7, the global optimum is reached. Results of reverse engineering of gene
G4 is more humble, but the unique interaction found is correct.

38

Chapter 4: Conclusions

4

Conclusions

Present reverse engineering algorithm applied on the five gene regulatory network Grn-
test gives very good results. With only one false positive interaction detected, the algo-
rithm recovers all real gene-gene interactions with their correct excitatory or inhibitory
type. Exact values of weights are not always reached partly due to the first order ap-
proximation made at time series level, to help integration in time series data generation
in case where only few target time series points are available, as concluded in Section
3.5.4 where the effect is met the first time.

Time computation of the single-gene reverse engineering algorithm gives excellent re-
sults. Even if the time depends on the size of the dataset given as input and handled
during the entire process, a simple computation time comparison is made between the
present algorithm and the biomimetic algorithm based on Analog Genetic Encoding
(AGE) developed in [19]. Results show that applications on a five gene regulatory net-
work take respectively 6-8 hours1 for the biomimetic algorithm versus about one minute
for Wyrd to infer the target network. We hope that this speedup will allow us to reverse
engineer large networks as the 50 gene network given as challenge in the second DREAM
(Dialogue for Reverse Engineering Assessments and Methods) conference, which will be
inferred in a close future.

Even if results of the five gene in silico experiment are good, some precisions shall be
added. First, all genes of the in silico target network built by hand use the standard
sigmoid model to generate target datasets. So as this model is the only one currently
implemented in Wyrd, reverse engineering algorithm generates evolved networks with
genes following the sigmoid model, too. This bias is obviously an advantage to the pro-
cess. In biological cases, biomolecules measured do not follow well known and defined
gene models. As sigmoid model used are an approximation of the biological behaviours
of gene [2], this difference between approximation and reality, added to the fact that
used target datasets are noiseless can lead to some supplementary difficulties to infer
gene regulatory networks.

1Both algorithms runned on Intel R©Pentium R©4 2.8GHz, 1GB RAM

39

Scalable Reverse Engineering of Nonlinear Gene Networks

More, all evolved parameters are bounded in the single-gene optimization (Section
2.5.3). As these last ones are known and have not been changed from the generation
of the in silico target network to reverse engineering of it, no problem occurs related to
this. However if the target network is unknown as it is the case in biological networks,
parameters of in silico gene model shall be evaluated. If lower and upper bounds are far
one from other, search space of parameters are consecutively large. If bounds are close
to avoid large search space, there is a risk that the optimal parameter is out of range.
In a more general way, all experiment parameters as CMA-ES ones need to be studied
carefully to found optimal values to set.

As the five gene network used to evaluate the efficiency of the present algorithm is not
a gold standard, a future application on the fifty gene network challenge made available
for the second DREAM conference will be done soon. To infer this in vivo network, wild
type and knockout (null-mutant) steady-states experiments are available, as 22 time se-
ries experiments with each 26 time points. Due to the fact that the DREAM2 challenges
are over for a while, many supports are available as results of participating teams, topol-
ogy of the target fifty gene network and information about the way that the results are
calculated.

Criteria used in DREAM2 challenges to assess reverse engineering algorithms results
are Areas Under Curve of the Precision-Recall (PR) and Receiver Operating Character-
istics (ROC) curves. These two widely used measures are very important to evaluate
search engine such as Information Retrieval and statistical classification and other binary
decision problems in machine learning [4]. David shows that a deep connection links PR
and ROC curves and proves that PR gives more information than ROC. To build such
plots in the present case, two distinct predictions lists must be written: one for each
excitatory and inhibitory gene-gene interactions. For all possible connections in one re-
gulatory network, a confidence level ∈ [0, 1] is defined from reverse engineering results.
For each list, a PR curve can be drawn, which shows how the number of correctly classi-
fied positive samples varies with the number of incorrectly classified negative samples2.
So the efficiency of the present reverse engineering algorithm on the fifty gene network
challenge may be compared to published results of other algorithms used by challenging
teams.

2Matlab tools has been implemented to write prediction lists, draw PR and/or ROC curves and
computes AUC from Wyrd results. Please refer to Annexe B.4

40

Chapter 5: Acknowledgements

5

Acknowledgements

I would like to special thank my responsible assistant Daniel Marbach for the support
he provided to me weeks after weeks in the realization of this research, as well as his
constant available and for the rereading of the present thesis report.

My gratitude goes also to Dario Floreano, Sven Bergmann and Claudio Mattiussi for
their participation in this Master Thesis.

To James N. Knight, thanks for his efficient implementation of CMA and L-CMA-ES
and for discussion about this Evolutionary Algorithm.

Finally, thanks to Peter Dürr for his help in the use and strategies about CMA-ES,
and to all the LIS collaborators.

Lausanne, January 18th, 2008

Thomas Schaffter

CD’s most played during writing report: Armand Amar - Songs from a world apart,
Anouar Brahem - Le pas du chat noir, The Lord of the Rings - The Fellowship of the
Ring, The Lord of the Rings - The Return of the King, Loreena McKennitt - An Ancient
Muse.

41

Scalable Reverse Engineering of Nonlinear Gene Networks

42

Bibliography

[1] P Brazhnik. Inferring gene networks from steady-state response to single-gene per-
turbations. Journal of Theorical Biology, 237:427–440, 2005.

[2] Kuang-Chi Chen, Tse-Yi Wang, Huei-Hun Tseng, Chi-Ying F. Huang, and Cheng-
Yan Kao. A stochastic differential equation model for quantifying transcriptional
regulatory network in saccharomyces cerevisiae. Bioinformatics, 21(12):2883–2890,
2005.

[3] C. Corne, D. andPridgeon. Investigating issues in the reconstructability of genetic
regulatory networks. In Evolutionary Computation, 2004. CEC2004. Congress on,
volume 1, pages 582–589, June 2004.

[4] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. In ICML ’06: Proceedings of the 23rd international conference on Machine
learning, pages 233–240, New York, NY, USA, 2006. ACM.

[5] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mrna
expression levels during cns development and injury, 1999.

[6] Nir Friedman, Iftach Nachman, and Dana Peér. Learning bayesian network structure
from massive datasets: The ”sparse candidate” algorithm. pages 206–215, 1999.

[7] Timothy S. Gardner, Diego di Bernardo, David Lorenz, and James J. Collins. In-
ferring genetic networks and identifying compound mode of action via expression
profiling. American Association for the Advancement of Science (AAAS), 301:102–
105, July 2003.

[8] Timothy S. Gardner and Jeremiah J. Faith. Reverse-engineering transcription con-
trol networks. Physics of Life Reviews, 2:65–88, January 2005.

[9] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and Franois Kps. Topological and
causal structure of the yeast transcriptional regulatory network. Nature Genetics,
31:60–63, April 2002.

[10] Nikolaus Hansen. Tutorial: Covariance matrix adaptation (cma) evolution strategy.
Slides, September 2006.

[11] Nikolaus Hansen. The cma evolution strategy: A tutorial, August 2007.

[12] Nikolaus Hansen and Stefan Kern. Parallel Problem Solving from Nature - PPSN
VIII, volume 3242/2004, chapter Evaluating the CMA Evolution Strategy on Mul-
timodal Test Functions, pages 282–291. Springer Berlin / Heidelberg, 2004.

43

Scalable Reverse Engineering of Nonlinear Gene Networks

[13] Nikolaus Hansen, Sibylle D. Mller, and Petros Koumoutsakos. Reducing the time
complexity of the derandomized evolution strategy with covariance matrix adapta-
tion (cma-es). Evolutionary Computation, 11(1):1–18, 2003.

[14] Christian Igel and Nikolaus Hansen. Covariance matrix adaptation for multi-
objective optimization. Evolutionary Computation, 15(1):1–28, 2007.

[15] Johannes F. Knabe, Chrystopher L. Nehaniv, and Maria J. Schilstra. Evolutionary
robustness of differentiation in genetic regulatory networks. In Stefan Artman and
Peter Dittrich, editors, Proceedings of the 7th German Workshop on Artificial Life
(GWAL-7), pages 75–84, Jena, 2006. Akademische Verlagsgesellschaft Aka, Berlin.

[16] James N. Knight and Monte Lunacek. Reducing the space-time complexity of the
cma-es. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 658–665, New York, NY, USA, 2007. ACM.

[17] Ljung Lennart. System identification, May 1995.

[18] Hong-Wu Ma, Bharani Kumar, Uta Ditges, Florian Gunzer, Jan Buer, and An-
Ping Zeng. An extended transcriptional regulatory network of escherichia coli and
analysis of its hierarchical structure and network motifs. Nucleic Acids Research,
32(22):6643–6649, December 2004.

[19] Daniel Marbach, Claudio Mattiussi, and Dario Floreano. Bio-mimetic Evolutionary
Reverse Engineering of Genetic Regulatory Networks. In 5th European Conference
on Evolutionary Computation, Machine Learning and Data Mining in Bioinformat-
ics (EvoBIO 2007), pages 155–165, 2007. Editors: E. Marchiori J. H. Moore J. C.
Rajapakse (Eds.) Publisher: Springer-Verlag Berlin Heidelberg.

[20] Claudio Mattiussi. Evolutionary Synthesis of Analog Networks. PhD thesis, Ecole
Polytechnique Fdrale de Lausanne, 2005.

[21] P. Mendes. Numerical biology: uses of in silico biochemical networks.

[22] P. Mendes. Developing strategies for systems biology. In Virginia Bioinformatics
Institute 2005 Scientific Annual Report, 2005.

[23] P. Mendes, W. Sha, and Ye K. Artificial gene networks for objective comparison
of analysis algorithms. In Bioinformatics, volume 19, pages 122–129(8). Oxford
University Press, September 2003.

[24] Nasimul Noman and Hitoshi Iba. Inference of gene regulatory networks using s-
system and differential evolution. In GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages 439–446, New York, NY, USA,
2005. ACM.

[25] John Reinitz and David H. Sharp. Mechanism of eve stripe formation. Mechanisms
of Development, 49:133–158, 1995.

[26] David M. Rocke and Blythe Durbin. A model for measurement error for gene
expression arrays. Journal of Computational Biology, 8(6):557–569, 2001.

44

BIBLIOGRAPHY

[27] D. Thu and Z. S. Qui. Structural comparison of metabolic networks in selected
single cell organisms. BMC Bioinformatics, 6(8), 2005.

[28] T. Van den Bulcke, K. Van Leemput, B. Naudts, P. Van Remortel, H. Ma, A. Ver-
schoren, B. De Moor, and K. Marchal. Syntren: a generator of synthetic gene
expression data for design and analysis of structure learning algorithms. BMC
Bioinformatics, 7(43), 2006.

[29] E. P. van Someren, L.F.A. Wessels, M.J.T. Reinders, and E. Backer. Searching for
limited connectivity in genetic network models, 2002.

[30] M. Wahde, J. Hertz, and M.L. Andersson. Reverse engineering of sparsely connected
genetic regulatory networks. In Proc. Fifth Annual Inter. Conf. on Computational
Molecular Biology (RECOMB), 2001.

[31] M. K. S. Yeung, J. Tegnr, and J. J. Collins. Reverse engineering gene networks using
singular value decomposition and robust regression. Proceedings of the National
Academy of Sciences of the United States of America, 99(9):6163–6168, Mars 2002.

[32] Yun Zheng and Chee Keong Kwoh. Identifying simple discriminatory gene vectors
with an information theory approach. In IEEE, editor, Computational Systems
Bioinformatics Conference, volume 1 of 8-11, pages 13–24, 2005.

45

Scalable Reverse Engineering of Nonlinear Gene Networks

46

Chapter A: Wyrd Handbook

A

Wyrd Handbook

A.1 Installation

A.1.1 Requirements

Wyrd is implemented in order to make maximum use of standard libraries already in-
stalled on a complete Linux distribution like openSUSE, Mandriva or Ubuntu that are
opensource operating systems. However to only run Wyrd (from binary, in opposition
to compile it from sources), you will be required to have at least the following additional
components installed on your system.

• libboost program options (≥ 1.33.1)
Already installed as part of Boost C++ Libraries on many Linux distributions1.

• libxml++ (≥ 2.6)
C++ Interface for XML Files

A.1.2 Compilation from sources

If you wish to build Wyrd from sources, the following dependencies must be first installed.

• Bindings Library of Boost Sandbox
It is not an official part of Boost, but is available from the Boost official web page.
There is other stuff in the sandbox, but only the bindings library is used.

• BLAS and LAPACK
Probably already installed on most of Linux distributions.

These components are needed to compile the CMA-ES library used in Wyrd and origi-
nally implemented by J.N. Knight and M. Lunacek [16]. Several changes have been made
to ensure the stability of the algorithm and its interaction with Wyrd.

1After installation, it is possible to have to create a symbolic link from libboost program options.so
to libboost program options.so.x.xx.x. where x.xx.x is the actual version, for example 1.33.1.

47

Scalable Reverse Engineering of Nonlinear Gene Networks

If KDevelop is present on your system, you can directly open the project file wyrd.kdeve-
lop with it and build Wyrd project through Build → Build Project.

If you do not have KDevelop installed, Wyrd compilation is also possible in commands
lines. In the root source files directory of Wyrd, aclocal without argument generates
aclocal.m4 which contains macro necessary for further actions. Then, autoconf without
argument will build the configure script. autoheader without argument and automake -a
-c create respectively the config.h.in file necessary to the config.h file and build Makefiles.
Finally, ./configure and make build the Wyrd binary. If there is no error, Wyrd is ready
for use.

A.2 Introduction
Wyrd is designed to study non-linear Gene Regulatory Network (GRN), where the

challenge is to find topologies - the gene-gene interactions - and gene’s parameters of
real, biological GRNs from measurements of mRNA levels of the genes that compose
them. For complete theory of the reverse engineering process implemented in Wyrd,
please refer to Chapter 2 of this report.

Wyrd implements the three following key features:

• Generation of GRNs
Generates fully determined GRNs and saves the into XML files.

• Simulation of GRNs
Takes fully determined GRNs in XML format as input, simulates them and so
generates steady-states or time series datasets of gene’s mRNA levels.

• Reverse engineering of underlying GRNs
Takes one or several datasets and try to recover the associated underlying GRN,
which generated these datasets.

A.3 Quickstart

A.3.1 User Interface

The user can interact with Wyrd through two ways: the command line options and the
configuration file. An example of configuration file is given at the end of this manual.
The - -config-file or -c flag allows to specify to Wyrd which file it must use as configu-
ration file. This flag is the only one that must be always given to the program.

The configuration file contains all parameters, for example the integration and calcu-
lation or the evolution parameters. All this different settings must be filled with a valid
value, otherwise there is an error message.

Some parameters of the configuration file can be directly given to Wyrd through com-
mand line options. In this case, the value of parameter given through this way overwrites
the corresponding value in the configuration file.

48

Chapter A: Wyrd Handbook

$./wyrd -c configuration.cfg

Figure A.1 The specification of the configuration file and the shortest way to run
Wyrd.

A.3.2 Project Id and filenames convention

A project Id, also called process Id, is necessary to build all input and output filenames
used by Wyrd. First, this allows to differentiate the results of multiple runs of the
program, and second, taking advantage of this filenames standardisation to run Wyrd
in non-interactive mode using - -interactiveMode 0 or -i 0 flags. I.e. run the program
without any user’s additional action. The project Id can be defined in the configuration
file or using the - -pId or -p flags. If no project Id is specified in later after launching the
program, it will be one of the first data asked to the user. Supposing that the process Id
is “key“, the following filenames will be asked as input or created in order to save output
data.

• key.xml and key evo.xml
Both refer to a fully specified GRN file in XML format. key.xml is the output GRN
in GRNs generation mode. In simulation mode, key.xml is the input GRN from
which steady-states and time series datasets are generated. In reverse engineering
mode, this file can be given as the target GRN (optional). In this last mode,
key evo.xml refers to the evolved GRN topology found after optimization processes.

• key ss wt.csv, key ss wt evo.csv and key ss wt evo2.csv
In simulation mode, key ss wt.csv is the wild type steady-states dataset gener-
ated from a fully specified GRN, always in XML format. In reverse engineering
mode, key ss wt.csv can be one of the input datasets if wild type steady-states
measurements are available. In this last mode, key ss wt evo.csv is obtained when
the entire found GRN is simulated, while key ss wt evo2.csv is the result of the
independent gene’s simulations.

• key ss ko.csv, key ss ko evo.csv and key ss ko evo2.csv
Idem that the previous item for knockout steady-states datasets.

• key ss hz.csv, key ss hz evo.csv and key ss hz evo2.csv
Idem that the previous item for heterozygous steady-states datasets.

• key ts.csv, key ts evo.csv and key ts evo2.csv
Idem that previous item for time series datasets.

• key ts init.csv
Contains initial mRNA concentrations for time series experiments. This file is used
only in simulation mode.

• key log dist g*.stat, id log se g*.stat
In reverse engineering mode, the fitness of all individuals are saved in key log dist g*.stat.

49

Scalable Reverse Engineering of Nonlinear Gene Networks

In the same mode and if target GRN is available, square errors between all indi-
viduals (solutions) and the target solution are saved in id log se g*.stat. * refers
to the index of the current gene evolved, ∗ ∈ [0, numGenes− 1].

• key log bOptim.stat
In this file, each line contains information about the best run, regardless of fitness,
of a gene’s optimization. Elements saved in this file are among others the index of
the best run, the best fitness, the associated square error (if GRN target available)
or still the found solution (gene’s parameters).

A.4 Generation of Gene Regulatory Networks

A.4.1 Preface

If someone without Wyrd’s specific resource wants to experiment Wyrd, the first step is
to create a fully specified Gene Regulatory Network (GRN). In generation mode, this is
possible through two ways.

• Interactive mode, -i 1
Select the first main menu ”Generate a fully specified GRN from a selected test
case or random network.“ (choice 0) and follow the indications.

• Non-interactive mode, -i 0
Here, even if -i 0 is enable, some actions from the user are requiered if the output
GRN is a random one. In this case, Wyrd needs specific data to generate random
networks, as presented in Section A.4.3. The command line option - -TestCase
choice or -t choice or the parameter testCase set to choice in the config file allow
to pre-select what type of networks Wyrd should generate. choice can take the
following values:

– 0 Breaked Repressilator (Section A.4.2)

– 1 Grntest (Section A.4.2)

– 2 Random networks (Section A.4.3)

A project identifiant is needed and used to build the name of the output XML file in
which the GRN topology will be saved.

A.4.2 Broken repressilator and Grntest

The two fully specified networks are represented in Table A.1. The broken repressilator
is composed of five genes and four inhibitor interactions. Originally, this topology had
an extra connection between gene ”g0“ and ”g4“, that was deleted in order to remove
the oscillatory state involved and so to allow the possible presence of steady-states.
The Grntest network has five genes, too, and has six gene-gene interactions of the two
excitatory and inhibitory types. All genes of both networks follow the sigmod model
introduced in Section 2.3.2, which is actually the only gene’s model implemented in
Wyrd.

50

Chapter A: Wyrd Handbook

Breaked Repressilator Grntest

vmax α β δ vmax α β δ
g0 0.90 1.00 3.20 0.15 0.10 1.00 0.00 0.01
g1 1.10 1.00 2.20 0.20 0.15 1.00 0.00 0.05
g2 0.60 1.00 5.00 0.09 0.20 1.00 0.00 0.10
g3 1.10 1.00 3.70 0.12 0.25 1.00 0.00 0.15
g4 1.00 1.00 4.00 0.10 0.30 1.00 0.00 0.20

w2 =


0 0 0 0 0
−4.1 0 0 0 0

0 −4.3 0 0 0
0 0 −3.9 0 0
0 0 0 −3.3 0

 w =


0 0 0 −0.5 0
1 0 0 −2 0
−2 0 0 0 4.5
0 0 0 0 0
0 3 0 0 0



Table A.1 The two types of fully determined GRNs available in the current version
of Wyrd. Both contain five genes and all gene’s behaviors follow the sigmoid model.
This model uses four parameters: the maximum transcription rate vmax, a multiplicative
constant for the regulatory activity (stepness of sigmod) α, the basal transcription (where
the sigmoid crosses the y-axis) β and a decay constant δ. Wyrd can also generate random
networks.

A.4.3 Random networks

Wyrd is able to generate random network. If the user wants to build one, Wyrd needs
the following parameters.

• A network size, numGenes

• The two parameters of a normal distribution, µ and σ

The strategy of networks building is the next one. First, numGenes genes are created
with gene’s parameters filled with random values taken in uniform real distributions
bounded by the corresponding parameters (vmax, δ, etc.) define in the settings file. To

1Element wij in the ith line, jth column of the weights matrix w represents the excitory (wij > 0)
or inhibitory (wij < 0) interaction from gene j to gene i.

51

Scalable Reverse Engineering of Nonlinear Gene Networks

set the topology, different numbers of incoming interactions numInteractions are de-
fined for each gene using the normal distribution, centred in µ with standard deviation
σ. This two parameters may be floating. Random floating numbers take by the ran-
dom numbers generator in this distribution are rounded to integral value, regardless
of rounding direction. Then, the following sub-strategy is repeated numInteractions
times: an integral random number is taken in the interval [1, numGenes], using uniform
distribution, which defines the index of the gene responsible of the incoming connection.
Finally, a floating random number is taken in a real uniform distribution [−maxWeight,
maxWeight] (maxWeight is defined in the config file) to give a strenght to this incoming
interaction. If selfLoop is set to 0, no gene auto-loop will be placed. Figure A.2 displays
an example of random networks generated by Wyrd.

The process ID is not yet defined. Process
ID is:
>> eighteen

Test Case Generation
======================
What do you want to process?
(0) Generate broken Repressilator
(1) Generate GrnTest
(2) Generate a random network
>> 2
Please specify the network size:
>> 18
Number of incoming gene interactions fol-
lows a normal distribution. Please provide
the following information.
Mean (mu):
>> 2
Standard deviation (sigma):
>> 1
XmlGRN::save: grn file eighteen.xml is cor-
rectly saved!

Figure A.2 Example of generation of random networks in Wyrd. The given param-
eters are 18 for the network size and the couple of values (2, 1) to define the normal
distribution used to set the number of gene’s incoming interactions, different from a gene
to another. The parameter rngSeed is used, so for the same three previous parameters
(numGenes, µ, σ) and the same seed, the random network generated is always the same.
The seed used in this example is 9.

It is important to highlight the fact that such random networks do not reflect the
properties of biological ones. In domain of in sillico networks generation, two main types
of topologies have been studied and are used in pratic to generate networks that display
some biological networks properties. The first one is known as ”small-world“ due to the
average distance between any vertices in the graph which is small. It has been shown
that the metabolic network E.coli displays this property. The second kind of topologies

52

Chapter A: Wyrd Handbook

is named ”scale-free“ following the work of Barabasi and Albert (1999) because the
majority of genes have only few interactions with others, during a minority of them have
a very large number of connections. A more detailled overview is presented by Mendes
in [23].

A.4.4 XML structure for Wyrd GRNs files

In Wyrd, all the handled networks are saved in XML format. This format was chosen
because desired data are structured. This allows to find at a glance any data in the XML
file if this last one is open with a text editor. To structure data, the following tags are
used.

• <GRN id=”grnId”>
One per file, this tag includes all the parameters of the network. A GRN identifiant
can be defined by the attribute id.

◦ <numGenes>value</numGenes>
Contains the number of genes in the network.

◦ <gene model=”sigmoid“ id=”g0“>
This tag includes all gene’s parameters as well as incoming interactions. There
is numGenes <gene> blocs one after another. The attribute model gives the
gene’s model. Here it is the sigmoid model which is used. The attribute id
allows to give a name to all genes of the network.

∗ <vmax>value</vmax>
Here are defined the parameters of each gene as the maximum transcrip-
tion rate vmax. For example, sigmoid model still contains α, β, δ. A
parameter c0 may be present, too. It may be used to save a particular
value of mRNA concentration (e.g. gene’s steady-state).

∗ <interactions>
Contains the <weight> tags. There is numGenes tags <weight> include
in this tag.

· <weight>value</weight>
This group of tags represent the strenght of the incoming interactions.
If an interaction is inexistant, the corresponding value is set to 0.

∗ </interactions>

◦ </gene>

• </GRN>

A.4.5 Initial mRNA concentrations for Time Series experiments

As discussed later, the generation of time series experiments needs initial points from
which the integrations of the dx

dt
, where x represents mRNA concentrations, start. After

generating a full specified GRN in generation mode, Wyrd may still generate a time
series file with initial mRNA concentrations for each gene and each experiment, which
can directly be used as it stands in time series simulation mode or modified thereafter

53

Scalable Reverse Engineering of Nonlinear Gene Networks

by the user. This file is created if the parameter ts0 is set to 1 in the configuration
file. In this case, the number of initial points, whose dimension is equal to the number of
genes in the network, is the number of time series experiments defined by the parameters
numTimeSeries. The initial mRNA concentrations of all genes are taken randomly in a
uniform real interval [0, ts0MaxC0] where the parameters ts0MaxC0 is also defined in
the settings file.

The name of this file is built from the process Id as key ts init.csv. The complete
description of this file is given in Section A.5.2.

A.5 Simulation of GRNs

A.5.1 Introduction

Simulation of networks consists to generate gene’s expression levels or mRNA concentra-
tions datasets. Wyrd allows to generate both types of the most commonly used data: the
wild type, knockout and heterozygous steady-states and time series datasets. To gener-
ate datasets, the user needs a fully specified GRN file in XML format as input, with the
same structure as presented in Section A.4.4. More generally, Section A.4 introduces the
user to the generation of such networks. In Wyrd, the simulation mode can be called
through two ways.

• Interactive mode, -i 1
Select the second item in the main menu, ”Simulate a fully specified Genes Regula-
tory Network (GRN) and generate datasets.“ (choice 1) and follow the indications.

• Non-interactive mode, -i 0
It is also possible to run the program without that any additional action are re-
quired from the user. So the following information should be specified through the
command line options or via the settings file before run Wyrd.

◦ runMode = 1 in settings file or flag -r 1 in command line.
Run the program in simulation mode.

◦ simulationMode = choice in settings file or flag -s choice in command line. In
simulation mode, this parameter defines what to do. choice takes the following
values.

∗ 0 Generation of time series datasets and possibility to save them into
one CSV file. 3

∗ 1 Generation of wild type, knockout and heterozygous steady-states
datasets and possibility to save them into three distinct CSV files.

∗ 2 Computation of the wild type steady-state and display it.

◦ -p key
A project Id is necessary to build filenames of all input and output files.

3The user can set Wyrd to display more information during processes as current state of datasets.
To enable this functionality, set displayDatasets to 1 is the configuration file.

54

Chapter A: Wyrd Handbook

So, the command line shown in Figure A.3 runs Wyrd in non-interactive (-i 0) and
simulation mode (-r 1), the program computes all steady-states datasets from the net-
work eighteen.xml (-s 1, -p eighteen) and saves them into three different files: eigh-
teen ss wt.csv, eighteen ss ko.csv and eighteen ss hz.csv without other action from the
user than to run Wyrd.

$./wyrd -c configuration.cfg -i 0 -r 1 -s 1 -p eighteen

Figure A.3 Example of the use of the simulation mode in Wyrd. This command runs
Wyrd in non-interactive (-i 0) and simulation mode (-r 1), the program computes all
steady-states datasets from the network eighteen.xml (-s 1, -p eighteen) and saves them
into three different files: eighteen ss wt.csv, eighteen ss ko.csv and eighteen ss hz.csv
without other action from the user than to run Wyrd.

A.5.2 Time Series datasets

Introduction

A time series experiment is defined as the evolution of all gene’s mRNA concentrations
from an initial point (expression levels of all genes at t = t0) until the establishment of
a steady-state, if it exists. For more theory aspect of time series data, please refer to
Section 2.3.3.

Setup

To generate time series datasets from a fully specified GRN in XML format, the procedure
is the following one.

1. Set numTimeSeries (settings file)
Set the number of time series experiments that Wyrd should generate.

2. Set numTimePoints (settings file)
The number of points taken between t0 and tmax. The distance between two points
represents the integration step. More numTimePoints is large, more integration
curves contain information and are accurate, and more the generated time series
dataset will help to reverse engineer the gene regulatory network. This property is
shown in Figure A.4.

3. Create an initial mRNA concentrations file
The establishment of a steady-state in the network after a period of time depends,
among others, on the initial conditions, like the initial expression levels of all genes
of the network. So, to generate different time series experiments, Wyrd needs a file
containing all the numTimeSeries initial point, with dimension equal to the gene
network’s size, in order to compute numTimeSeries different experiments. The
structure of this file is presented in the next section.

55

Scalable Reverse Engineering of Nonlinear Gene Networks

(a) (b)

Figure A.4 The integration curve of dx
dt for one gene between t0 = 0 and tmax =

200 is displayed respectively for a) numTimePoints = 4 and b) numTimePoints
= 30. The second one contains clearly more information about the gene network.

Note: If the network to simulate has been generated by Wyrd and if during this
process the parameter ts0 was set to 1 in config file, so Wyrd has also generates
an initial random mRNA concentrations file with numTimeSeries points (Section
A.4.5).

Initial mRNA concentrations file

To generate time series experiments in simulation mode, Wyrd needs initial expression
levels for each gene of the network and for each experiment as input. This filename
is defined as key ts init.csv if key is the project Id. The file contains numTimeSeries
lines with each containing numGenes real values separated by a tab. For a given gene
regulatory network of size five, an example of a content of key ts init.csv is given Table
A.2.

0.1037 3.645 5.019 4.991 4.958
0.07543 1.338 3.162 1.421 0.1332
2.186 8.772 4.185 1.375 2.481

Table A.2 Example of a content of key ts init.csv for the five gene regulatory network
Grntest. The number of experiments numTimeSeries is 3 and the dimension of all initial
points is numGenes equal to 5 in the GRN Grntest.

Generation of Time Series datasets

When setup is clear, Wyrd can generate the time series dataset key ts.csv from the
network key.xml and the initial concentrations file key ts init.csv. Here again, two ways
are possible.

56

Chapter A: Wyrd Handbook

• Interactive mode, -i 1
Select the second main menu, ”Generate a fully specified GRN from a selected
test case or random network.“ (choice 1), follow the indications, enter the project
Id if it is not already specified, and select the first menu of the simulation mode,
”Generate Time Series datasets from a fully specified GRN“ (choice 0). A duration
time tmax for integration process will still be asked.

• Non-interactive mode, -i 0
The command line option -r 1 starts Wyrd in simulation mode. -s 0 allows to
generate time series datasets under simulation mode. A duration time will however
be asked to the user after launching Wyrd.

Wyrd will generate numTimeSeries experiments. Following the content of key ts init.csv,
two special cases can appear.

• Number of lines in key ts init.csv < numTimeSeries
If key ts init.csv contains less initial concentration points that the number of ex-
periments, extra experiments will begin from the starting point built with gene’s
expression levels defined in the GRN XML file key.xml stored in tag <c0> (Sec-
tion A.4.4). So if the value of numTimeSeries minus the number of lines in
key ts init.csv is greater than one, all extra experiments will have the same initial
point, and the time series experiments will be the same ones providing no more
additional information about the network. So it is advisable to have the parame-
ters numTimeSeries equal to the number of given initial points in key ts init.csv,
or greater of one to take advantage of the initial solution compiled from the tags
<c0> of the GRN file key.xml.

• Number of lines in key ts init.csv > numTimeSeries
Only the first numTimeSeries initial points of key ts init.csv will be taken into
account.

The command line of Figure A.5 generates a time series dataset from the five gene
network Grntest. Figure A.6 illustrates the execution of this process.

$./wyrd -c configuration.cfg -i 0 -r 1 -s 0 -p grntest

Figure A.5 Example of simulation of time series dataset from a fully specified GRN
file, grntest.xml. The time series dataset is saved in the CSV file, grntest ts.csv.

57

Scalable Reverse Engineering of Nonlinear Gene Networks

Simulation mode
===================
XmlGRN: Grn file grntest.xml is correctly open!
Simulation time:
>> 200
[TS] Loading Initial Concentrations file grntest ts init.csv ...
[TS] There are initial concentrations for 3 experiment(s)!
[TS] WARNING: Number of initial concentrations in file grntest ts init.csv (3) is not equal
to parameter ’numTimeSeries’ in settings file (4, the real number of experiments)!
[TS] Experiment(s) with no given initial concentrations C0 will start with default Gene
Network C0!
[TS] Datasets: grntest ts.csv is correctly saved!

Figure A.6 Illustration of the command displayed in Figure A.5. Even if the non-
interactive mode is enable (-i 0), a duration time tmax for time series integrations is
asked to the user.

Structure of time series datasets

The content of the file grntest ts.csv created by the example given in Figure A.5, is
displayed in Figure A.3 for the two first time series experiments. All elements on the
same line are separated by tab and no empty lines are present.

The first line is the header of the dataset. Its first element, ”Time“ is used to verify
that a given file is well a time series dataset. The other elements in the header are the
names of the genes.

The second bloc contains the first time series experiment. The left column contains the
time scale, from 0 to the duration time given by the user. Here tmax = 200. The interval
[0, tmax] is divided into numTimePoints, here equals to 13. mRNA concentrations on the
line t = 0 correspond to the initial concentrations data of the file key ts init.csv, in bold
style in Figure A.3.

A.5.3 Steady-States datasets

Introduction

The network reached a steady-state when the variation of mRNA concentration dxi

dt
ap-

proach zero for all genes. The generation of steady-states datasets is to compute the
steady-state of the network with some variants in order to obtain a maximum of infor-
mation about the network through its responses from gene’s perturbations. Calculate a
steady-state is to solve a system of numGenes coupled differential equations. For more
information about steady-states theory, please refer to Section 2.3.3.

Wyrd handles the three different types of steady-steates:

• Wild Type Steady-State

• Knockout Steady-States (vmax,i = 0)

58

Chapter A: Wyrd Handbook

”Time” ”g0” ”g1” ”g2” ”g3” ”g4”

0 0.1037 3.645 5.019 4.991 4.958
16.67 0.4742 1.666 2.569 1.174 1.618
33.33 0.9892 1.151 2.097 0.8612 1.467
50 1.445 1.17 1.988 0.8354 1.454
66.67 1.833 1.358 1.933 0.8332 1.469
83.33 2.162 1.588 1.87 0.8333 1.485
100 2.44 1.807 1.784 0.8333 1.492
116.7 2.675 1.994 1.672 0.8333 1.496
133.3 2.875 2.147 1.541 0.8333 1.497
150 3.043 2.268 1.401 0.8333 1.498
166.7 3.186 2.362 1.264 0.8333 1.499
183.3 3.307 2.435 1.137 0.8333 1.499
200 3.409 2.492 1.026 0.8333 1.499

0 0.07543 1.338 3.162 1.421 0.1332
16.67 0.6361 0.8709 2.185 0.8815 1.367
33.33 1.145 0.919 2.013 0.8372 1.401
50 1.579 1.133 1.956 0.8331 1.441
66.67 1.947 1.394 1.909 0.8333 1.471
83.33 2.258 1.646 1.843 0.8333 1.487
100 2.521 1.865 1.75 0.8333 1.493
116.7 2.744 2.045 1.63 0.8333 1.496
133.3 2.933 2.188 1.495 0.8333 1.498
150 3.092 2.3 1.355 0.8333 1.498
166.7 3.228 2.388 1.221 0.8333 1.499
183.3 3.342 2.455 1.099 0.8333 1.499
200 3.439 2.508 0.9931 0.8333 1.499

Table A.3 Content of grntest ts.csv for the five gene regulatory network Grntest. Only
the two first time series experiments are displayed. Each experiment contains numTime-
Points x numGenes, here 13 x 5 gene’s expression levels. The first left column is the
time points scale [0, tmax]. Gene’s expression levels on line t = 0 correspond to the initial
concentrations data taken from the file grntest ts init.csv. These mRNA concentrations
are highlight in bold style.

• Heterozygous Steady-States(vmax,i → 1
2
vmax,i)

Where the steady-state i represents a change in the maximal transcription rate vmax
of the gene i.

Setup

Several parameters must be fixed:

1. Set SS abs precision and SS rel precision
These two parameters are used to evaluate the convergence of the root finding of

59

Scalable Reverse Engineering of Nonlinear Gene Networks

the system of numGenes coupled equations. The convergence is tested following
Equation A.1.

|dXi| < SS abs precision + SS rel precision · |Xi| (A.1)

where Xi is the current solution at iteration i and dXi the difference between
(Xi−Xi−1). More SS abs precision and SS rel precision are small, more the number
of iterations to solve the system will be large due to the high precision required.
In some cases, the required time by a resolution with this two parameters set with
very small values may explode for a tiny improvement of the solution X. So a
trade-off between these two aspects must be found. A couple of values advised for
this two parameters is (0.001, 0.001).

2. Set maxIterGslSs
The maximum number of iterations to solve the system of numGenes equations.
2000 iterations has been a good choice in many cases.

In order to resolve the system of equations, the choice of initial point is important,
so two different initial solutions may very well go toward two different steady-states.
But as only a full specified network is taken as input, any indication to choice this
initial point is available. In the steady-states simulation mode of Wyrd, the initial point
X0 = [11111...]T is always taken.

Generation of Steady-States datasets

This section introduces the user how to generate wild type, knockout and heterozygous
steady-states from a fully specified GRN in XML format. This three types of steady-
states are saved respectively in key ss wt.csv, key ss ko.csv and key ss hz.csv if the input
network is contained in the key.xml file. As usually, two ways are possible to process a
desired operation on Wyrd.

• Interactive mode, -i 1
Select the second main menu, ”Simulate a fully specified Genes Regulatory Network
(GRN) and generate datasets.“ (choice 1), follow the indications, enter the project
Id if it is not already specified, and select the second menu of the simulation mode,
”Generate Steady-States datasets (wild type, knockout and heterozygous) from a
fully specified GRN“ (choice 1).

• Non-interactive mode, -i 0
The command line option -r 1 starts Wyrd in simulation mode. -s 1 allows to
generate in the same time all three types of steady-states datasets.

To illustrate this use, Figure A.7 and A.8 are displayed.

60

Chapter A: Wyrd Handbook

$./wyrd -c configuration.cfg -i 0 -r 1 -s 1 -p grntest

Figure A.7 This command will runs Wyrd in simulation mode (-r 1), generates the
wild type, knockout and heterozygous datasets associated to the GRN file grntest.xml
(-p grntest). The three output steady-states datasets are saved into three different files:
key ss wt.csv, key ss ko.csv and key ss hz.csv.

Simulation mode
===================
XmlGRN: Grn file grntest.xml is correctly open!

[SS] Wild Type SS Experiment: grntest ss wt.csv is correctly saved!
[SS] Knockout SS Experiment: grntest ss ko.csv is correctly saved!
[SS] Heterozygous SS Experiment: grntest ss hz.csv is correctly saved!

Figure A.8 Illustration of the command shown in Figure A.7.

Structure of Steady-States datasets

Files that contain wild type steady-states displayed the structure shown in Figure A.4.
All elements on the same line are separated by tab and no empty lines should be present.
Top-left element ”Ss“ is used as tag to test validity of all wild type steady-state files.

”Ss” ”G0” ”G1” ”G2” ”G3” ”G4”
”wt” 3.973 2.728 0.4636 0.8333 1.5

Table A.4 Content of grntest ss wt.csv generated by the command in Figure A.7 for
the five gene regulatory network Grntest.

Knockout and heterozygous steady-states files display a similar structure. The top-
left elements are also used as validity tags and are respectively ”SsKo“ and ”SsHz“.
Steady-states are presented line by line.

”SsKo” ”G0” ”G1” ”G2” ”G3” ”G4”
”G0” 0 0.4766 1.991 0.8333 1.21
”G1” 3.973 0 0.02048 0.8333 0.75
”G2” 3.973 2.728 0 0.8333 1.5
”G3” 5 2.98 0.07462 0 1.5
”G4” 3.973 2.728 0.0007077 0.8333 0

Table A.5 Content of grntest ss ko.csv generated by the command in Figure A.7 for
the five gene regulatory network Grntest. Knockout steady-states are presented line by
line.

61

Scalable Reverse Engineering of Nonlinear Gene Networks

”SsHz” ”G0” ”G1” ”G2” ”G3” ”G4”
”G0” 1.987 1.738 1.879 0.8333 1.492
”G1” 3.973 1.364 0.4259 0.8333 1.475
”G2” 3.973 2.728 0.2318 0.8333 1.5
”G3” 4.481 2.924 0.1972 0.4167 1.5
”G4” 3.973 2.728 0.02046 0.8333 0.7498

Table A.6 Content of grntest ss hz.csv generated by the command in Figure A.7 for
the five gene regulatory network Grntest. Heterozygous steady-states are presented line
by line.

Wyrd used three separated files because it is possible that one or more types of steady-
states datasets are not available to reverse engineer a given gene regulatory network.

A.6 Reverse Engineering of GRNs

A.6.1 Introduction

The first goal of Wyrd is to reverse engineer networks from steady-states and/or time
series experiments, in order to find the underlying gene regulatory networks that have
generated them. Wyrd optimizes gene after gene the whole network following the idea
introduces in Section 2.3.3. Instead of solving a system of numGenes coupled differential
equations, the system is divided into numGenes simple equations which are much faster
to solve. Thus, Wyrd is one of the few existing algorithms that are able to reverse
engineer large and non-linear gene regulatory network.

A.6.2 Prepare inputs

Process Identifiant

The first thing to define is a process identifiant. Once chosen, ensure that all input
filenames (steady-states and time series datasets, eventually target GRN in XML file if
it is available) follow the filenames standard introduces in Section A.3.2.

Time Series datasets

If available, verify that the content of this file respects the description given in Section
A.5.2. The name of this file must be key ts.csv where key is the process Id. Time series
datasets are not mandatory if one or more steady-states datasets are available.

Steady-States datasets

If available, verify that the content of these files respect the description given in Section
A.5.3. The names of these files must be key ss wt.csv, key ss ko.csv and key ss hz.csv
where key is the process Id for respectively datasets of wild type, knockout and heterozy-
gous steady-states. Steady-states datasets are not mandatory if a file containing one or
more time series experiments is available.

62

Chapter A: Wyrd Handbook

Target network

The target network refers to the network that has generated the available steady-states
and/or time series datasets. If it is given to Wyrd as input for the reverse engineering, it
is possible to record the evolution of the mean square error distance between the found
evolved solution (the evolvable gene’s parameters) and the target solution through the
generations of evolution.

A.6.3 Initialization of parameters

The following parameters are taken into account during the reverse engineering process.
All these variables are defined in the settings file.

• displayDatasets
Display intermediate results. Like a verbose+ mode.

• SS abs precision and SS rel precision
When an evolved gene is simulate independently in order to generate evolved
datasets to compare to the target datasets, these two parameters are used as con-
vergence test during the resolutions of differential equations. The relation A.1 stops
the multidimensional root-finding when it is satisfied.

• maxIterGslSs
Maximum number of iterations to solve systems of equations (use GSL4).

• selfLoop5 Specify to Wyrd if gene’s self interaction are possible.

• maxWeight (evolvable param)
The range [-maxWeight, maxWeight] defines the space search for the interactions
weights.

• minMax and maxMax (sigmoid model)(evolvable param)
The range [minMax, maxMax] defines the space search for the maximum transcrip-
tion rate vmax.

• minAlpha and maxAlpha (sigmoid model)(evolvable param)
The range [minAlpha, maxAlpha] defines the search space for the multiplicative
constant for the regulatory activity α (steepness of sigmoid).

• minBeta and maxBeta (simgoid model)(evolvable param)
The range [minBeta, maxBeta] defines the space search for the basal transcription
β (where the sigmoid crosses the y-axis).

• minDelta and maxDelta (sigmoid model)(evolvable param)
The range [minDelta, maxDelta] defines the space search for the decay constant δ.

4GNU Scientific Library
5Assuming that there is no gene’s self interaction allows to simplify the problem when steady-states

are searched, and thus save time during process. Must be always set to 0 (i.e. no gene’s self
interaction present) in the current version of Wyrd.

63

Scalable Reverse Engineering of Nonlinear Gene Networks

• ssWt, ssKo, ssHz, tse and target
Define respectively if wild-type steady-state, knockout steady-states, heterozygous
steady-states, time series experiments and target network are available for GRN
reverse engineering.

• zeroRandomInitilization (evolution)
The starting point of all gene’s optimizations is a random network. All initial
weights of this random network are set to zero if zeroRandomInitilization equal to
1, else if equal to 0, weights are set to random values taken in range [-maxWeight,
maxWeight].

• rngSeed (evolution)
Used to generate initial random solution of gene’s optimizations.

• evolutionAlgorithm (evolution)
Defines if the algorithm of optimization is CMA-ES (0) or L-CMA-ES (1).

• numGeneOptim (evolution)
The number of optimization runs for each gene’s optimization.

• restartPrevSolution (evolution)
If set to 1, the initial solution of a run of one gene’s optimization is the solution
found at the end of the previous run.

• gene2optimize (evolution)
The index of gene to optimize, from 0 to numGenes-1. If gene2optimize is set to
-1, Wyrd will optimized all genes of the network one after another.

• initSigma (CMA-ES)
Initial value of sigma.

• maxEvals (CMA-ES)
The number of maximum solutions evaluated. The number of generations for an
evolution is given by maxEvals

popSize
and rounded.

• popSize (CMA-ES)
Population size.

• tolX (CMA-ES)
Stop optimization if the change in the population mean between two generations
is less than tolX.

• tolFitness (CMA-ES)
Stop optimization if the change in the minimum fitness between two generations is
less than tolFitness.

• stopFitness (CMA-ES)
Stop current optimization if the fitness if less than stopFitness.

• mDim (L-CMA-ES)
The subspace dimension m, in order to have m << n.

64

Chapter A: Wyrd Handbook

Evolvable parameters

In reverse engineering process and for sigmoid model, a solution for a particular gene is
composed by its values of vmax, α, β, δ and its incoming interaction’s weight. In Wyrd,
all of these parameters that have their min and max bounds identical are not considered
as evolvable and are not inserted in the phenotype.

A.6.4 Run GRNs Reverse Engineering process

To launch the reverse engineering process of an underlying gene regulatory network, the
user can as usually choice between interactive and non-interactive mode.

• Interactive mode, -i 1
Select the third main menu, ”Find underlying GRN from given datasets.“ (choice
2), enter the project Id if it is not already specified and follow the indications.

• Non-interactive mode, -i 0
The command line option -r 2 runs Wyrd in reverse engineering mode. Specifica-
tion of wild type, knockout, heterozygous steady-states, time series datasets and
target GRN availability can be specified with respectively -w 1, -k 1, -h 1, - -ts 1
and - -target 1.

If all types of datasets are available for the process, Figure A.9 shows how run Wyrd in
non-interactive mode. Regardless of the way chosen to run Wyrd, one of the first things
that it will do is to display a listening of all given inputs and a confirmation that they
have been correctly open. Figure A.10 illustrates this.

$./wyrd -c configuration.cfg -i 0 -w 1 -k 1 -h 1 - -tse 1 –target 1 -p grntest

Figure A.9 This command runs Wyrd with all types of datasets as input (-w 1, -k 1,
-h 1, –tse 1). The target GRN is also given (- -target 1), thus distance between target
and evolved solutions can be recorded. Remember that all these parameters are in the
configuration file, and that command line options simply redefine them.

A.6.5 Management of CMA-ES

Wyrd allows to optimize only one gene, or all genes of the network, one after another.
This can be controlled with the parameter gene2optimize. If it is set with a value of the
integral interval [0, numGenes-1], only the selected gene will be process. If set to -1, all
genes will be process, from gene’s index 0 to gene numGenes-1. Each gene’s optimiza-
tion is composed of numGeneOptim runs, launched one after another in order to evolved
numGeneOptim times the same gene and saved the results of the best run.

In order to optimze genes, two evolutionary algorithms are available: CMA-ES (Co-
variance Matrix Adaptation Evolutionary Strategy) and L-CMA-ES. L-CMA-ES can be

65

Scalable Reverse Engineering of Nonlinear Gene Networks

GRN Reverse Engineering
===========================
Some Steady-States Experiment(s) are available!
XmlGRN: Grn file grntest.xml is correctly open!
[SS] The dataset grntest ss wt.csv is correctly loaded!
[SS] The dataset grntest ss ko.csv is correctly loaded!
[SS] The dataset grntest ss hz.csv is correctly loaded!
Some Time Series Experiment(s) are available!
[TS] Loading dataset(s) file grntest ts.csv ...
Number of genes in this dataset: 5
Size of dataset: 13 x 5
Size of dataset: 25 x 5
Size of dataset: 30 x 5
The dataset grntest ts.csv is correctly loaded!

Figure A.10 Listening of input files given to Wyrd in reverse engineering mode. Here,
there are three time series experiments with 13, 25 and 30 time points.

useful when the dimension of the problem is large, so when the network size is large (di-
mension is equal to a little number of gene’s parameters and numGenes or numGenes-1
(if selfLoop parameter is set to 0) interaction’s weights). L-CMA-ES is a variant of
CMA-ES that allows to reduce the dimension space of the problem n to m as m << n.
In this case, a subspace is built with the m principal dimensions of the original space.
The importance of the multiple dimensions is characterized by them eigenvalue in the
covariance matrix. If L-CMA-ES is used, the parameter mDim defined the parameter
m used in the L-CMA-ES theory. For complete description of CMA and L-CMA-ES
algorithms, please refer to [10] and [16].

In interactive mode, the user can choice which CMA or L-CMA-ES algorithms he
wishes to use. Four choices are offer: use CMA-ES for only the next gene’s optimization,
use CMA-ES for all futher genes’s optimization, and the two same possibilities with L-
CMA-ES. This allows, if the user wishes it, to change the algorithm of optimization from
one gene to another. These four choices are shown in Figure A.11. In non-interactive
mode, all gene’s optimization will be process with the algorithm strategy defines by the
parameter evolutionAlgorithm in the configuration file.

At this stage, Wyrd begins the numGeneOptim runs of the first or the selected index
of gene. The initial solution is a random one, generate with the seed rngSeed. Soon the
second run, an initial points strategy defines by the user is applied: initial point of run
i is the best solution found at run i − 1 (restartPrevSolution = 1), or initial points of
the second run and others are all new random points with values taken in real uniform
intervals defined by the gene’s parameters bounds (restartPrevSolution = 0).

A progress bar indicates the state of the current run of one gene’s optimization. At
the end of each run, the number of evaluations, the best fitness found and its associated
solution are highlighted. If the fitness of a run is the best ever one, all the results of this
run are saved. Figure A.12 shows the result of the run 0/numGeneOptim of one gene’s

66

Chapter A: Wyrd Handbook

===========================
| Optimization of Gene 0
===============================
What Evolutionary Algorithm would you like to use?
(0) CMA-ES, only for this gene’s optimization.
(1) CMA-ES, always (for all the following genes’s optimizations).
(2) L-CMA-ES, only for this gene’s optimization.
(3) L-CMA-ES, always.

Figure A.11 In interactive mode, the user can choice between four optimization strate-
gies.

optimization.

Run 0
========
CMA Initial Point:
[6](0.115694,0.0207483,0,0,0,0)
CMA Progress || =================================== || End
CMA Maximum number of evaluations reached ... stoping optimization.
CMA Number of Evaluations: 50050
CMA Best Fitness: 0.0037049
CMA Best Point: [6](0.0115139,0.104788,0.0120821,-0.0568978,-0.386043,0.0531433)
CMA Actually, run 0 is the best one (fitness=0.0037049)

Figure A.12 Example of Wyrd display for each run of each gene optimized.

CMA algorithms stop evolution run when one of these three stopping criteria is met.

• Maximum number of evaluations done
Define by maxEvals.

• Best specified fitness found
Define by stopFitness.

• NaN error occure
In the current implementation of CMA by Knight and Lunacek, some NaN error
can occure in different places. The majority of them have been managed in the
implementation of Wyrd and CMA code in order to avoid program crash and be
able to continue optimization. However, a NaN error occurs always when maxEvals
is very large (>5e6) and thus very little numbers handle by CMA algorithm, which
leads to NaN errors. In this case, the CMA stops and return the best fitness and
associated results. In all cases, this error is not critical. More, a good use is to set
maxEvals to a large number in order to make the maximum number of evaluations
versus a large computation time.

67

Scalable Reverse Engineering of Nonlinear Gene Networks

A.6.6 Results and output files

Wyrd saves all results in several files, with filenames defined in accordance with the
standard introduces in Section A.3.2.

• key evo.xml
The best found GRN topology. Contain the best gene’s parameters and interac-
tion’s weights found for all genes at the end of the gene’s optimizations.

• key ss wt evo.csv, key ss ko evo.csv and key ss hz evo.csv
After found the whole evolved gene regulatory network, Wyrd simulate it to gen-
erate steady-state datasets. A type of evolved steady-states datasets are computed
and saved only if the associated target datasets have been available for the GRN
reverse engineering process.

• key ts evo.csv
If target time series experiments are given to Wyrd, the entire evolved gene regu-
latory network is simulate to obtain the evolved time series dataset.

• key ss * evo2.csv and key ts evo2.csv
Similar to the previous steady-states and time series datasets, these ones contain
datasets generated gene by gene independently from key.xml.

• key log dist g[0] r[1].stat
One file per run of gene’s optimization, it contains the evolution of the fitness
through generations. This file is in CSV format with the elements on the same line
separated by a tab (so it is more a TSV file, but CSV denomination is kept). Each
line contain the fitness of all the individual of the current population. Thus, there
are popSize elements in each line, with an additional one: the first element of each
line is the index of the generations. [0] refers to the gene’s index [0, numGenes-1]
and [1] to the gene’s run index [0, numGeneOptim].

• key log se g[0] r[1].stat
Similar as key log dist g[0] r[1].stat, these files save not the fitness but the square
error between evolved individual and target solution. So, the content of these files
are computationable only if the target GRN is available.

• key log bOptim.stat
One line per gene optimized. Each line contains the index of the best run, the best
fitness, the associated square error and best genotype.

68

Chapter A: Wyrd Handbook

A.7 Visualization of Wyrd results
Parallel to the development of Wyrd, a Matlab tool with GUI was implemented in

order to be able to quickly analyse the results after a Wyrd process. It is composed of
several Matlab scripts that can be used separately to realize specific tasks.

The files generated during a reverse engineering of a gene regulatory network are taken
as inputs, and a HTML report are built including GRN representations (using Graphviz),
fitness and square error graphs, presentation of GRN’s parameters in tables, time series
graphs, etc. Please refer to the WyrdReport Handbook for more information about the
use of this tool.

A.8 Doxygen Documentation
A complete Doxygen documentation is available to help developers or end-user of

Wyrd. HTML and LATEXformats are located in ./src directory includes in the main
folder of Wyrd project.

69

Scalable Reverse Engineering of Nonlinear Gene Networks

70

Chapter B: WyrdReport Handbook

B

WyrdReport Handbook

B.1 Introduction
Wyrd creates several data files during and at the end of all reverse engineering pro-

cesses. In order to quickly and easily visualize these data, a Matlab tool has been im-
plemented. It takes in input all the files generated by Wyrd and produces a structured
HTML report as output. In current version, all reports can be divided into two main
parts. In the first one, general informations on the found and target (if available) Gene
Regulatory Networks (GRN) are displayed, as general experiment informations, GRN
topologies, gene’s parameters or still fitness or square errors graphics between evolved
and target GRN parameters through evolutions.

The second part is about the time series experiments. From time series data files,
integration curves of genes expression levels are represented for all genes of the GRN,
with three types of points: simulation of a single gene, as computed during individual
gene’s optimizations, simulation of the entire evolved GRN found at the end of the re-
verse engineering process and composed of all genes independently optimized, and target
time series experiments given as input to the GRN reverse engineering process.

Matlab was selected as development support because in addition to being multi-
platform, it already has a large number of statistical tools and graphical representations
available. Under the denomination of WyrdReport, this tool is composed of several little
scripts that can be used for the most independently of the others, e.g. draw a GRN
topology from a Wyrd GRN XML file, graphs fitness evolution, time series integration,
etc.

B.2 Quickstart

B.2.1 WyrdReport GUI - wrgui

A Graphic User Interface (GUI) was designed to allow the user to change quickly the
main parameters of the HTML reports. In the Matlab scripts directory, the command
wrgui runs WyrdReport and displays a window identical to the one shown in Figure

71

Scalable Reverse Engineering of Nonlinear Gene Networks

B.1.

Figure B.1 Screenshot of the WyrdReport Graphical User Interface.

A brief description of each components grouped by blocks is given:

• Wyrd Process Files Directory
It is here that the path of the folder containing all the output files generated by a
Wyrd during the reverse engineering process must be given. If the checkbox “Clean
this directory after process” is checked, all the content of this folder will be moved
into a new folder called “data” in the main new HTML report directory.

• Report Generalities
The first editbox must be filled with the process Id given to Wyrd in order to
generate all input and output filenames as described in Section A.3.2. The name
of the main folder of the HTML report will be the same as the project Id. It will
be created in the current work directory of Matlab. The second field contains the
name of the experimenter.

• Experiments options
The report is intended to be divided into three parts: GRN Topology (general
information), Steady-States and Time Series parts. Actually, steady-states part is
not used but its management is still available in order to integrate future inter-
esting information on steady-states experiments. If one of this three checkboxes is
checked, the correspond part will be process and include in the HTML report.

Graphical representations of GRN’s topologies are available. In evolved GRN’s
topologies, even the non-existing interactions determined by Wyrd have generally
always non-zero weights. So a weight threshold is necessary to discriminate weak
interactions and to not represent them in the Graphviz representation.

72

Chapter B: WyrdReport Handbook

The editbox “Absolute accepted error” is used to display in red evolved gene’s
parameters that do not respect the following relation. So, this feature is only used
if target GRN is available.

|evolved parameter − target parameter| > |accepted error| (B.1)

• Graphics options
HTML reports contain many images as GRN’s topologies, fitness and square errors
through evolutions and time series experiments. If the checkbox “Process Images”
is checked, images will be processed. In this case, the dpi given in the editbox on
the same line is used. Process images takes the most part of the whole compu-
tation time necessary to produce a Wyrd report. A trick is that if a report has
already been generated once time and that the user changes data as the name of
the experimenter or the “Absolute accepted error”, there is no need to generate a
second time the images. Then the editbox “Process Images” can be unchecked and
so the update of the report will be almost instantaneous.

The next two features allow to display fitness and square errors in four types of
plot in Matlab: plot, semilogx, semilogy and loglog.

• HTML options
All reports are in HTML format, and contain a left menu and a main page. The
menu allows to quickly navigate between the different sections of the main page.
The HTML page’s design are defined by a CSS file (style sheet) which defines prop-
erties as text fonts, images sizes, borders, page’s colors, etc. It is in this block of
options that the CSS file to use must be specified. Note that this method as been
choice because modification in the CSS file does not require modification in the
source code of the HTML page. So all changes in this file are directly visible after
reload the HTML page in the internet browser.

The next three editboxes define respectively the width of the menu’s buttons, the
maximum number of gene’s parameters in a single line (GRN Topology part) and
the maximum number of time series graphics in a single line (Time Series part).

It is possible to resize the width of the menu using the unique slider of the GUI.
The position of the slider defines the width of the menu in percentage of the total
width of the internet browser window. If the value of the slider is 0, no menu will
be include in the HTML report, useful to print it.

• Progress bar
This feature informs the user on the progress of the generation of the HTML report.
If the checkbox “Clean this directory after process” is not checked, a little bit of
the total size of progress bar will remain at the end of the process to recall that
the folder containing the input data had not been cleaned.

Once all fields are filled, the Wyrd HTML report can be generated by pressing the
button “Generate Report”.

73

Scalable Reverse Engineering of Nonlinear Gene Networks

B.2.2 HTML reports

During report generation, a folder with the same name that the project Id is created.
In this last one, two others folders are created, “data” and “images”, and three HTML
files: index.html, menu.html and key.html where key is the project Id. To visualize the
report, open the page index.html with an internet browser as Opera, Firefox or Safari
among many others. The report should look like Figure B.2.

Figure B.2 The HTML page index.html must be open with an internet browser as
Opera, Firefox or Safari among many others.

In section “General Informations”, some data as the experimenter’s name, the date of
the HTML report generation or the process Id are displayed. Then, evolved GRN topol-
ogy is built using Neato (Graphviz) from the XML file. If target network are available,
the associated target topology is also built and displayed to the right. As all images in
the report, it is possible to click on them and so open the image in full screen.

After GRN topologies, a short report about all gene’s optimizations is included. The
first two graphs represent respectively the evolution of the fitness and the evolution of
the square errors. The fitness is defined by the mean square distance between the evolved
and target dataset as steady-states and/or time series datasets. The goal is to minimize
this fitness in order to find an evolved network that generates the same dataset which
them generated by the target network. The square error is the mean square distance
between all gene’s parameters of the evolved and target network. More square error is
small, more the gene’s parameters of the evolved and target network are similar. So,
square errors graphics can only be drawn if the target network is available and given to
Wyrd during the GRN reverse engineering process.

The first next table displays the numerical values of the best fitness found and the
associated square error. The second table contains all the evolved gene’s parameters. If

74

Chapter B: WyrdReport Handbook

target network is present, target gene’s parameters are displayed. In this case, the couple
of gene’s parameters that do not respect the relation B.1 are display in red. The report
of evolution about gene “g0” is displayed in Figure B.3.

Figure B.3 All reports about gene’s optimizations contains at least a graphic of the
evolution of the fitness and numerical values of the best fitness and of the gene’s pa-
rameters found. If target network is available, a graphic of the evolution of the square
errors and numerical values of the square errors associated to the best evolved solution
and target gene’s parameters are included, too.

In the time series section, all experiments are represented. Each experiment is mainly
composed of numGenes genes integration graphs associated to the numGenes of the
gene regulatory network. In one experiment, a short table presents the number of time
point which is the same for all gene’s integrations in a same experiment. Then, the total
normalized distance between target time series and evolved datasets are displayed. Note
that the evolved dataset is here the final time series dataset obtained when the entire
evolved network is simulated. This total normalized distance is given by:∑G

g=1

∑E
e=1

∑PT (e)
pt=1 |mRNAevo(g, e, pt)2 −mRNAtarget(g, e, pt)2| 12

numGenes ∗
∑E

e=1 PT (e)
(B.2)

where G = numGenes, E the total number of time series experiments, PT (e) the num-
ber of time points in experiment e and mRNA(g, e, pt) the mRNA expression level of
gene g in experiment e at time point pt.

In each integration curve, three types of points are drawn:

• Target dataset

75

Scalable Reverse Engineering of Nonlinear Gene Networks

• Evolved dataset (gene)

• Evolved dataset (GRN)

where the points in green are taken from the file key ts evo2.csv and the points in
blue from key ts evo.csv. key ts evo.csv contains mRNA levels when the entire evolved
GRN is simulated, and key ts evo2.csv contains the mRNA levels of the independent
gene’s simulations as computed during gene’s optimizations. Figure B.4 shows integra-
tion curves of experiment 1 for the five genes of the Grntest network. The value under
each graph is the mean square distance between red and blue points.

Figure B.4 Integration curves of experiment 1 for the five genes network Grntest. Red
points represent target mRNA concentrations, green points independent optimized genes
mRNA and blue points mRNA concentrations when the entire found network is simulated
at the same time.

B.2.3 Advices

All user’s parameters and basic parameters are handled by an instance of class wrInit-
Core called wrInit. One of the first things that make wrgui when it is launched for
the first time is to allocate this object and initialize all fields of the GUI with default
values saved into wrInitCore.m. When the user changes a parameter as the name of the
experimenter or the dpi for images, data are saved into the current instance wrInit. So if
the user close wrgui window and open it a second time, the wrgui parameters will be the
same that when the window have been closed. The only way to restore default values is
to clear the instance wrInit.

Uncheck “Clean this directory after process” may be useful for intermediary genera-
tion of the HTML report. For example, il the user changes the value of the weight’s

76

Chapter B: WyrdReport Handbook

threshold used to remove weak interactions, it can directly generate the report a second
time without changing the folder which contains the input data files.

Like process images takes a big part of the whole computation time, it is interesting to
disable images processing by unchecking “Process Images” if the user changes for exam-
ple only the experimenter’s name. But in the case where the user changes the weight’s
threshold, GRN topologies images must be processed again (connections drawn depend
of the threshold) but not the time series images. These last ones can be numerous if
there is a lot of experiments and genes. Unchecking “Time Series Experiments” avoids
to process all integration curves of time series experiments. Like now time series section
is no longer part of the HTML report, a quick new generation of the report with checking
“Time Series Experiments” and unchecking “Process Images” will add again time series
section as part of the HTML report.

Before printing reports, it is advisable to remove the left menu of the report. This is
possible with setting the unique slider of the GUI to 0. The menu frame will not only
be resized to width 0, but is really removed.

B.3 Using Matlab tools in command lines

B.3.1 Instance of wtInitCore

Like wrgui, many scripts of WyrdReport need an instance of the class wrInitCore called
wrInit. To instantiate this object manually:

>> wrInit = wrInitCore();

Figure B.5 Creation of wrInit, instance of the class wrInitCore, which is used by several
WyrdReport scripts.

To change or access wrInit parameters, the user must used specific methods set and
get. For example, the commands shown in Figure B.6 set the dpi parameter to 200.

To avoid sometimes errors due to mismanagement of global instances, the best and
fastest way is to change directly the values of parameters contained in wrInitCore.m.

>> wrInit = set(wrInit, ’dpi’, 200);
>> get(wrInit, ’dpi’)
ans =
200

Figure B.6 Set and get methods must be used to change or access to class instance’s
parameters.

77

Scalable Reverse Engineering of Nonlinear Gene Networks

B.3.2 WyrdReport

Once wrInit is instantiated, the next command generate an HTML report:

>> wyrdReport(wrInit)

Figure B.7 WyrdReport takes as parameter the instance wrInit. If an error occurs,
verify that the path of the input folder and that the process Id are correct.

B.3.3 Others WyrdReport scripts

Some Matlab scripts are implemented to allow direct use of them in ordre to realize
specific tasks.

If we want to build a GRN representation using Graphviz in PNG format from a fully
specified GRN in XML format following the syntax used in Wyrd (Section A.3.2), the
script printGrnTopology may be used as display in Figure B.8. Here, printGrnTopology
takes the XML file grntest evo.xml as input which locates in the work directory of Matlab
(empty path ” used) and create the image grntest evo.png in this same directory.

>> printGrnTopology(”, ’grntest evo’);

Figure B.8 From a fully specified GRN in XML format with the syntax used in Wyrd
(Section A.3.2), it is easy to create a PNG representation using Graphviz.

Note that this same script can extract the weight matrix of the network or the gene’s
identifiants as shown in Figure B.9.

The command help in Matlab offer good support for all scripts. Annexe F contains
the hierarchy of Matlab scripts and their use given by the command help.

B.4 Precision-Recall and ROC Matlab scripts
Precision-Recall and ROC are two widely used measures for evaluating the quality of

results in domains such as Information Retrieval and statistical classification. In Wyrd,
reverse engineering produce among others as output interaction’s weights between gene,
that can be excitatory (wij > 0) or inhibitory (wij < 0). So two lists of predictions can
be built, one for positive and one for negative weights. From these lists of predictions
and the target solution, it is possible to build Precision-Recall or ROC curves to estimate
the quality of the Information Retrieval algorithms.

A set of Matlab scripts has been implemented so as to easily calculate the area under
Precision-Recall and ROC curves, and curves themselves. The hierarchy of this scripts
is shown in Figure B.10.

78

Chapter B: WyrdReport Handbook

>> [a,a,W] = printGrnTopology(”, ’grntest evo’);
>> W
w =

0 0.8810 4.7530 1.6578 3.0966
1.0194 0 -0.0296 -1.4153 -0.1525
-2.0119 -0.0156 0 -0.4714 4.8268
4.9490 3.9609 4.9999 0 4.9999
0.0329 3.0585 0.1142 -0.1550 0

Figure B.9 One use of printGrnTopology. From the same XML file that used previ-
ously, we extract the weights matrix from tags <weight>.

Figure B.10 A set of three main scripts is available. confidence takes a CSV file
with evolved weights elements and a Matlab matrix of the target weights as input and
create Matlab matrix with source and target gene’s indexes and confidence level for the
associated connections. computePR takes a vector of sorted prediction in descending
order of size numGenesXnumGenes, and a solution vector of the same size with element
equal to 1 (interaction present between two specific genes) or 0 (no interaction). Following
the Precision-Recall or ROC choice, computePR returns the area under the curve and
the x-axis and y-axis of this curve in order to plot it. writePredictions regroups these
two scripts. strsplit is used to split strings. This script has been implemented by Gie
Spaepen. Scripts in grey are the work of an another person.

The script confidence needs as input a file data.stat which contains multiple weights
matrix of evolved networks of the same reverse engineering problem. All elements on the
same line must me separated by a tab. If there is no self-interaction as it is handled in
Wyrd, it is possible to remove the gene’s self-interactions, i.e. all wii elements. Figure
B.1 (a) displays an example of content of data.stat.

In Matlab syntax, this input file is built as a column vector of matrix [W1;W2; ...;WN]
where each W is a weight matrix. If target solution is available, a Matlab matrix of size
numGenesXnumGenes must be created with target weights. This matrix can contain
real values of weights, but 0, 1 and -1 elements are sufficient to defined if there is positive
interaction between two specific genes (1), negative interaction (-1) or no interaction (0).
See help confidence for more information about file syntax.

From the input file data.stat and a specified threshold, confidence computes a Matlab

79

Scalable Reverse Engineering of Nonlinear Gene Networks

matrix of predictions for gene-gene interactions. The threshold is used to set to zero weak
weights. Note that prediction lists are not sorted here in descending order of confidence
levels. If the target solution is available, two additional columns are added, one for each
future lists, in the predictions matrix which contain elements 1 (there is an interaction
between to specific genes) and 0 (no interaction). The beginning of a such output Matlab
matrix is displayed for the five genes Grntest network in Table B.1 (b).

* * · · · * w00 w01 w02 w03 w04

* * · · · * w10 w11 w12 w13 w14

* * · · · * w20 w21 w22 w23 w24

* * · · · * w30 w31 w32 w33 w34

* * · · · * w40 w41 w42 w43 w44

* * · · · * w00 w01 w02 w03 w04
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0.98 0 1
4 0 0.15 0.22 0 0
0 0 0.86 0 1 0
1 0 0 0 0 0
...

...
...

...
...

...

Table B.1 (a) Structure of data.stat for a five genes network. Elements * are any
parameters and can be of any number on each line. On the right is the evolved matrix of
weights found. Blue elements must be deleted in data.stat if parameter selfLoop of script
confidence is set to 0. The 6th line is the begin of a new evolved W. key log bOptim.stat
files produced by Wyrd follow this syntax. (b) Output matrix of confidence script. Each
line represents a gene-gene interaction. Columns are in the order: source gene index,
target gene index, confidence level for positive weights list, confidence level for negative
weights list. If target w is available, there are two more columns: real presence of positive
interactions for positive list and real presence of negative interactions for negative list. For
example, the 4th line shows that Wyrd found an inhibitory interaction with confidence
level 0.98 in the 4th column from gene 3 to gene 0, and that there is realy an inhibitory
interaction at this place as defined by the target network (1 in the 6th column).

After sorting the matrix of Table B.1 by descending order the fird column for positive
predictions or by descending order the fourth column for negative predictions, the script
computePR can be used. It takes as input a column vector of confidence level of size
numGenes X numGenes sorted in descending order, e.g. the 3th or 4th column of the
Figure B.1 (b), and the associated solution column vector, respectively the 5th or the
6th column of the same figure. computePR return the area under Precision-Recall or
ROC curve ans x-axis and y-axis of this same curve. writePredictions automates this
process. The following commands process:

>> [area,x,y]=writePredictions(5,0,’data.stat’,0.2,’pr’,1,’xml’,’grntest.xml’);
>> plot(x,y)
>> [area,x,y]=writePredictions(5,0,’data.stat’,0.2,’roc’,1,’xml’,’grntest.xml’);
>> plot(x,y)

Figure B.11 writePredictions regroups all confidence and computePR features, and
more.

80

Chapter B: WyrdReport Handbook

• Open the file data.stat which contains one or more evolved GRN weights matrix,
in CSV format.

• ’xml’,’grntest.xml’ opens the target GRN in XML format, grntest.xml. It is also
possible to give directly the target weights matrix as a Matlab matrix with ’mat’,
’targetMatrix’ where targetMatrix is the Matlab target matrix.

• Sort in descending ordre the output matrix given by confidence regardless of pre-
diction levels of positive weights (1), (0) for the negative weights.

• Write in a file dataEXCITATORY.list the excitatory predictions list sorted in de-
scending order.

• Give to computePR the sorted column of confidence levels. computePR returns
area and Precision-Recall curve (’pr’) and x-axis and y-axis. For ROC features,
replace ’pr’ by ’roc’.

• Return this area and the two axis.

• Make the same process for the ROC curve and plot it.

Figure B.12 displays the two PR and ROC plots for excitatory gene-gene interactions.

(a) (b)

Figure B.12 For excitatory interactions, Previous-Recall (a) and ROC (b) curves are
drawn. Area under curve are highlighted. In both curves, more the predictions are
correct, more the areas under curves are large. FPR=“False Positive Rate”, TPR=“True
Positive Rate”. The algorithm used is based on the paper of J. Davis [4].

81

Scalable Reverse Engineering of Nonlinear Gene Networks

82

Chapter C: Wyrd Settings file

C

Wyrd Settings file

######################### Wyrd PARAMETERS ###############################

Configuration file for Wyrd 1.0

#

Thomas Schaffter, Thomas.Schaffter@epfl.ch

Master Project, "Scalable Reverse Engineering of Nonlinear Gene

Networks", September 2007 - February 2008

Laboratory of Intelligent Systems (LIS)

Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-Suisse

###

===

GENERAL PARAMETERS

Interactive mode (0=No, 1=Yes)

interactiveMode = 0

Run modei

0 = Create a Test Case (i.e generate a XML file from of a fully

specified GRN)

1 = Simulation of a fully specified GRN

2 = Find an underlying Genes Regulatory Network

runMode = 2

Select the operation to process in simulation mode

0 = Generate Time Series data

1 = Generate Steady-States data (wild type, knockout and heterozygous)

2 = Compute Wild Type Steady-States of a f.s. (fully specified) GRN

simulationMode = 0

Test Cases

0 = Breaked Repressilator

1 = Grntest

2 = Random GRN

testCase = 2

83

Scalable Reverse Engineering of Nonlinear Gene Networks

Display generated datasets during processes

displayDatasets = 0

Process id

#pId = grntest

===

INTEGRATION AND STEADY STATE CALCULATION

Absolute precision in integration / steady state

SS_abs_precision = 0.001

Relative precision in integration / steady state

SS_rel_precision = 0.001

Max number of iterations for GSL Multidimensional root finding

maxIterGslSs = 2000

Time step of integrator (strongly affects integration time, though it

should not affect accuracy)

dt = 5

===

UPPER AND LOWER BOUNDS FOR THE GRN PARAMETER VALUES

Presence of self-loop in GRN totopoly (0 for no)

Actually, set to 1 is an error (computation of x wrong!)

selfLoop = 0

Interaction strength (-max ... max)

maxWeight = 5

maximum transcription rate

minMax = 0

maxMax = 2

Sigmoid parameter alpha (minAlpha was 1)

minAlpha = 1

maxAlpha = 1

Sigmoid parameter beta (corresponds to non-saturated part of sigmoid)

minBeta = 0

maxBeta = 0

Decay rate

minDelta = 0.01

maxDelta = 0.3

Bounds for initial conditions c0 (do not change)

minC0 = 0

maxC0 = 0

===

EXPERIMENTS

Load Time Series initial points (No=0, otherwise Yes)

84

Chapter C: Wyrd Settings file

SIMULATION Use pId_ts_init.csv with initial concentrations to generate

Time Series datasets. If no (=0), initial point will be those specify

in XML GRN file (pId.xml).

GENERATION In generation mode, if ts0=1, Wyrd generates a file with

random initial expression levels. Set for numTimeSeries experiments,

initial C0 don’t exceed ts0MaxC0

ts0 = 1

Max C0 mRNA levels, used if ts0=1

ts0MaxC0 = 10

REVERSE ENGINEERING

Wild Type Steady-States dataset availability

ssWt = 1

Knockout Steady_States dataset availability

ssKo = 1

Heterozygous Steady_States dataset availability

ssHz = 1

Time Series datasets availability

tse = 1

Target GRN availability (if available, solution square error can be

computed)

target = 1

SIMULATION Number of time series experiments

numTimeSeries = 3

SIMULATION Number of time points in each time series (dt is used as

time step)

numTimePoints = 13

Set true to normalize target expression values between 0 and 1 (this

option is not handled)

normalize = 0

===

EVOLUTION

Random networks are initialized with all weights set to:

0: random weights

1: weights set to zero

zeroRandomInitilization = 1

Seed for the Random Number Generator (only to generate the initial

random GRN before start evolution)

rngSeed = 9

Evolution algorithm

0: CMA-ES, 1: L-CMA-ES

evolutionAlgorithm = 0

For each gene, number of independent run’s optimizations

numGeneOptim = 1

During a batch of single gene’s run optimization

85

Scalable Reverse Engineering of Nonlinear Gene Networks

1 = initial point of the new CMA run is the final previous one (allow

to continue previous optimizations)

0 = new initial points in intervals defined in section "UPPER AND LOWER

BOUNDS FOR THE GRN PARAMETER VALUES"

restartPrevSolution = 0

Index of gene to optimize (from 0 to numGenes-1, -1 to optimize all genes

one after one)

gene2optimize = -1

===

CMA++

Initial population variance

initSigma = 1

Stop if the fitness function has been evaulated more than maxFunEvals times

maxEvals = 500000

Population size

popSize = 50

Stop optimization if the change in the population mean between two

generations is less than tolX

tolX = 1e-6

Stop if the change in the minimum fitness between two generations is less

than tolFun

tolFitness = 1e-15

Stop if f_min < stopFitness

stopFitness = 1e-15

For L-CMA-ES, subspace dimension m

mDim = 10

86

Chapter D: In silico Target Datasets of Grntest

D

In silico Target Datasets of Grn-
test

D.1 grntest ss wt.csv

"Ss" "G0" "G1" "G2" "G3" "G4"

"wt" 3.973 2.728 0.4636 0.8333 1.5

D.2 grntest ss ko.csv

"SsKo" "G0" "G1" "G2" "G3" "G4"

"G0" 0 0.4766 1.991 0.8333 1.21

"G1" 3.973 0 0.02048 0.8333 0.75

"G2" 3.973 2.728 0 0.8333 1.5

"G3" 5 2.98 0.07462 0 1.5

"G4" 3.973 2.728 0.0007077 0.8333 0

D.3 grntest ss hz.csv

"SsHz" "G0" "G1" "G2" "G3" "G4"

"G0" 1.987 1.738 1.879 0.8333 1.492

"G1" 3.973 1.364 0.4259 0.8333 1.475

"G2" 3.973 2.728 0.2318 0.8333 1.5

"G3" 4.481 2.924 0.1972 0.4167 1.5

"G4" 3.973 2.728 0.02046 0.8333 0.7498

D.4 grntest ts.csv

"Time" "g0" "g1" "g2" "g3" "g4"

0 0 0 0 0 0

10 0.4277 0.4163 1.11 0.6476 0.9252

20 0.776 0.6022 1.644 0.7921 1.209

30 1.083 0.7622 1.843 0.8244 1.322

87

Scalable Reverse Engineering of Nonlinear Gene Networks

40 1.358 0.9295 1.91 0.8314 1.387

50 1.607 1.104 1.924 0.8329 1.43

60 1.832 1.279 1.914 0.8332 1.458

70 2.036 1.447 1.888 0.8333 1.474

80 2.22 1.604 1.851 0.8333 1.484

90 2.387 1.747 1.801 0.8333 1.49

100 2.538 1.875 1.741 0.8333 1.493

110 2.675 1.988 1.672 0.8333 1.495

120 2.798 2.086 1.595 0.8333 1.497

130 2.91 2.171 1.513 0.8333 1.497

140 3.011 2.244 1.429 0.8333 1.498

150 3.103 2.307 1.345 0.8333 1.498

160 3.186 2.361 1.264 0.8333 1.499

170 3.261 2.407 1.186 0.8333 1.499

180 3.328 2.447 1.114 0.8333 1.499

190 3.39 2.482 1.047 0.8333 1.499

200 3.445 2.511 0.9861 0.8333 1.499

0 1 1 1 1 1

10 1.273 1.004 1.59 0.8705 1.369

20 1.528 1.115 1.812 0.8416 1.433

30 1.76 1.261 1.881 0.8351 1.457

40 1.971 1.416 1.885 0.8337 1.473

50 2.161 1.568 1.861 0.8334 1.483

60 2.334 1.71 1.818 0.8334 1.489

70 2.49 1.839 1.762 0.8333 1.493

80 2.631 1.955 1.696 0.8333 1.495

90 2.759 2.057 1.621 0.8333 1.496

100 2.874 2.145 1.54 0.8333 1.497

110 2.979 2.222 1.457 0.8333 1.498

120 3.073 2.288 1.373 0.8333 1.498

130 3.159 2.344 1.29 0.8333 1.499

140 3.236 2.393 1.212 0.8333 1.499

150 3.307 2.435 1.137 0.8333 1.499

160 3.37 2.471 1.069 0.8333 1.499

170 3.427 2.502 1.006 0.8333 1.499

180 3.479 2.529 0.9486 0.8333 1.499

190 3.526 2.552 0.897 0.8333 1.499

200 3.569 2.573 0.8508 0.8333 1.499

0 2 2 2 2 2

10 2.123 1.606 1.957 1.093 1.559

20 2.284 1.649 1.877 0.8911 1.498

30 2.441 1.775 1.8 0.8458 1.492

40 2.586 1.901 1.725 0.836 1.494

50 2.718 2.013 1.648 0.8339 1.496

60 2.837 2.11 1.568 0.8335 1.497

70 2.946 2.193 1.485 0.8334 1.498

80 3.043 2.264 1.4 0.8333 1.498

88

Chapter D: In silico Target Datasets of Grntest

90 3.132 2.325 1.317 0.8333 1.498

100 3.212 2.377 1.237 0.8333 1.499

110 3.284 2.421 1.161 0.8333 1.499

120 3.35 2.459 1.091 0.8333 1.499

130 3.409 2.492 1.026 0.8333 1.499

140 3.463 2.52 0.9667 0.8333 1.499

150 3.511 2.545 0.9134 0.8333 1.499

160 3.555 2.566 0.8654 0.8333 1.499

170 3.595 2.585 0.8225 0.8333 1.499

180 3.631 2.601 0.7842 0.8333 1.499

190 3.664 2.615 0.7501 0.8333 1.499

200 3.693 2.627 0.7197 0.8333 1.499

0 2 3 4 1 0.5

10 2.178 2.488 2.346 0.8705 1.364

20 2.347 2.262 1.973 0.8416 1.481

30 2.501 2.175 1.816 0.8351 1.496

40 2.641 2.161 1.714 0.8337 1.498

50 2.768 2.184 1.625 0.8334 1.498

60 2.882 2.224 1.539 0.8334 1.498

70 2.986 2.271 1.453 0.8333 1.498

80 3.08 2.319 1.368 0.8333 1.498

90 3.165 2.364 1.285 0.8333 1.499

100 3.242 2.406 1.206 0.8333 1.499

110 3.312 2.444 1.132 0.8333 1.499

120 3.375 2.477 1.064 0.8333 1.499

130 3.432 2.506 1.001 0.8333 1.499

140 3.483 2.532 0.9445 0.8333 1.499

150 3.53 2.555 0.8934 0.8333 1.499

160 3.572 2.575 0.8475 0.8333 1.499

170 3.61 2.592 0.8065 0.8333 1.499

180 3.645 2.607 0.7699 0.8333 1.499

190 3.676 2.62 0.7373 0.8333 1.499

200 3.704 2.632 0.7084 0.8333 1.499

89

Scalable Reverse Engineering of Nonlinear Gene Networks

90

Chapter E: Wyrd Class Dependencies

E

Wyrd Class Dependencies

91

Scalable Reverse Engineering of Nonlinear Gene Networks

F
ig

u
re

E
.1

C
la

ss
de

pe
nd

en
ci

es
of

al
l

C
+

+
cl

as
s

of
W

yr
d.

C
M

A
-E

S
im

pl
em

en
ta

ti
on

is
th

e
on

e
in

tr
od

uc
ed

by
K

ni
gh

t
an

d
L

un
ac

ek
in

[1
6]

.
F

ile
s

hi
gh

lig
ht

ed
in

gr
ey

lig
ht

ar
e

th
e

w
or

k
of

ot
he

rs
.

92

Chapter F: Matlab Scripts Documentation

F

Matlab Scripts Documentation

93

Scalable Reverse Engineering of Nonlinear Gene Networks

F
ig

u
re

F
.1

D
ep

en
de

nc
y

of
M

at
la

b
sc

ri
pt

s
th

at
co

m
po

se
d

th
e

to
ol

W
yr

dR
ep

or
t.

H
T

M
L

re
po

rt
s

ca
n

be
ge

ne
ra

te
d

w
it

h
w

yr
dR

ep
or

t
sc

ri
pt

.
A

G
ra

ph
ic

al
U

se
r

In
te

rf
ac

e
is

de
ve

lo
pe

d
w

it
h

G
U

ID
E

an
d

ca
n

be
ca

lle
d

by
w

rg
ui

.
Sc

ri
pt

s
ha

ve
be

en
im

pl
em

en
te

d
in

or
de

r
to

be
ru

n
in

de
pe

nd
en

tl
y

of
ot

he
rs

.
T

he
m

aj
or

it
y

of
sc

ri
pt

s
ne

ed
an

in
st

an
ce

of
w

rI
ni

tC
or

e
ca

lle
d

w
rI

ni
t.

T
hi

s
ob

je
ct

ha
nd

le
s

al
lu

se
r’

s
an

d
ge

ne
ra

l’s
pa

ra
m

et
er

s.
In

de
pe

nd
en

t
of

W
yr

dR
ep

or
t,

th
e

sc
ri

pt
w

ri
te

P
re

di
ct

io
ns

al
lo

w
s

to
w

ri
te

pr
ed

ic
ti

on
s

lis
ts

in
to

fil
es

an
d

dr
aw

n
P

re
ci

si
on

-R
ec

al
l

an
d

R
O

C
cu

rv
es

as
to

ca
lc

ul
at

e
th

e
ar

ea
un

de
r

th
es

e
cu

rv
es

.
D

ot
te

d
lin

es
m

ea
n

th
at

th
e

de
pe

nd
en

ce
to

th
e

ta
rg

et
sc

ri
pt

is
no

t
m

an
da

to
ry

.

94

Chapter F: Matlab Scripts Documentation

F.1 bestRun

PURPOSE

BESTRUN - Gives informations on the best run of a gene’s optimization.

SYNOPSIS

bRun = bestRun(indexOptimization)

DESCRIPTION

Input:
indexOptimization : index of the gene optimized

Output:

bRun.indexGeneOptim : is equal to indexOptimization
bRun.indexBRun : index of the best run
bRun.fitness : best fitness of this run
bRun.se : associated square error (-1 if not available)
bRun.solution : vector that contains the solution (phenotype)

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

Author:1

Thomas Schaffter, Thomas.Schaffter@epfl.ch
Master Project, ”Scalable Reverse Engineering of Nonlinear Gene
Networks”, September 2007 - February 2008
Laboratory of Intelligent Systems (LIS)
Ecole Polytechnique Fdrale de Lausanne, CH-Suisse

CROSS-REFERENCE INFORMATION2

This function calls:

get

wrInitCore

This function is called by:

printDistances

printSquareError

writeGrnPart

1In the following pages, only the scripts of this author are documentated.
2Matlab script M2HTML by Guillaume Flandin is used to build cross-reference information.

95

Scalable Reverse Engineering of Nonlinear Gene Networks

F.2 computePR

PURPOSE

COMPUTEPR - Compute Precision-Recall or ROC curves and area under these curves.

SYNOPSIS

[area, x, y] = computePR(confidence, correct, curve)

DESCRIPTION

From a confidence predictions vector sorted in descending order and a vector that
contains if yes or no a connection exists in realty, COMPUTEPR computes Precision-
Recall (PR) curve (following DREAM2 pseudo-code and J. Davis paper[1].) and area
under the curve. COMPUTEPR can also compute Receiver Operator Characteristic
(ROC). If PR strategy is selected, results are the Area Under Curve of PR, x is Recall
and y is Precision. For ROC, x is False Positive Rate (FPR) and y True Positive Rate
(TPR).

[1] Jesse Davis and Mark Goadrich, 23rd International Conference on Machine Learning
(ICML), Pittsburgh, PA, USA, 26th - 28th June, 2006

Input:
confidence : column vector of length NxN where N is the number of genes in the

network. Elements are confidence (in interval [0,1]) predictions and
are sorted in descending order.

correct : column vector of same length as confidence vector. Elements could
take value 0 or 1. Element k in ’correct’ vector is associated to
element k in ’confidence’ vector. If element k are set to 1 in
’correct’ so an interaction exists in reality, otherwise 0.

curve : PR or ROC selection
{’pr’ | ’roc’}

Output:
area : Area Under Curve
x : x-axis. Recall if curve=’pr’, FPR if curve=’roc’
y : y-axis. Precision if curve=’pr’, TPR if curve=’roc’

CROSS-REFERENCE INFORMATION

This function calls:

confidence

This function is called by:

writePredictions

96

Chapter F: Matlab Scripts Documentation

F.3 confidence

PURPOSE

CONFIDENCE - Compute confidence predictions list.

SYNOPSIS

mat = confidence(numGenes, selfLoop, repos, dataFilename, ext, threshold)
mat = confidence(numGenes, selfLoop, repos, dataFilename, ext, threshold, targetW)

DESCRIPTION

CONFIDENCE extracts from a Wyrd batch file of optimizations, the weights matrix
found, and after filtered these raw data with a threshold in order to set to 0 weak
interactions, two confidence lists predictions are built, one for positive samples (inter-
actions) and one for negatives ones. If weights matrix target is available, returns matrix
contains to supplementary columns, the first is the ’correct’ column vector for positive
weights, the second one the ’correct’ vector for negatives ones. (See COMPUTEPR
help for more informations). Note that the implementation allow to use directly a
batch file of optimizations generated by Wyrd, which lines have the following struc-
ture: [gene’index, bestRun, fit, squErr, [gene’s params], wi0, wi1, ..., winumGenes]. If
’selfLoop’ parameter is set to 0 in Wyrd, it must be also the case here, and in this case,
each line of the batch file (which is a single gene’s optimization) contains numGenes-1
in place of numGenes (all gene’s self-interaction are equal to 0 and are not included in
the evolved phenotype).
Also, CONFIDENCE is not responsive to the number of elements before weights ele-
ments in each line of batch optimizations file because CONFIDENCE extracts weights
elements from the last element of the line.

Input:
numGenes......: number of genes in the Gene Regulatory Network
repos : directory where is the batch file of data
selfLoop : gene’s self-interactions, equal to 0 if there are not possible.
dataFilename : name of the batch file, without extension
ext : extension of dataFilename file, e.g. ’.stat’
threshold : all abs(weight) < threshold in batch data will be set to 0
targetW : the numGenesXnumGenes, target W (Matlab matrix)

targetW(i,j) := weight gj -> gi.

Output:
mat: a matrix of size (numGenes X numGenes) X (4 or 6)

column 1 : source interaction genes index
column 2 : inferred (target) genes index
column 3 : confidence levels for positive weights
column 4 : confidence levels for negative weights

97

Scalable Reverse Engineering of Nonlinear Gene Networks

If targetW is given:
column 5 : element = 1 if an excitatory interaction exists in reality, other-

wise 0.
column 6 : idem for inhibitory interactions

CROSS-REFERENCE INFORMATION

This function calls:

-

This function is called by:

computePR

writePredictions

98

Chapter F: Matlab Scripts Documentation

F.4 get

PURPOSE

GET - Gathers all get methods of wrInitCore instance, in order to access to wrInitCore’s
properties.

SYNOPSIS

val = get(obj, propName)

DESCRIPTION

Input:
obj : instance of wrInitCore
propName : the name of the property that we will access

Output:
val : desired value’s property of wrInitCore’s instance

CROSS-REFERENCE INFORMATION

This function calls:

-

This function is called by:

bestRun

printDistances

printGrnTopology

printSquareError

printTimeSeries

resizeProgressBar

wrgui

writeGrnPart

writeIndex

writeMenu

writeTsPart

wyrdReport

99

Scalable Reverse Engineering of Nonlinear Gene Networks

F.5 printDistances

PURPOSE

PRINTDISTANCES - Reads distances logs files generated during Wyrd processes and
builds graphics representations.

SYNOPSIS

[nbGenerations, popSize] = printDistances(numGenes, repos, genericFileName, scale)
[nbGenerations, popSize] = printDistances(numGenes, repos, genericFileName, scale,
proBar)

DESCRIPTION

Input:
numGenes...........: number of genes in the Genes Regulatory Network
repos : path of the repository (no ’/’ at end) which contains

distances logs files
genericFileName : generic filename of distances log files (CSV format)
scale : type of graph representation

{’plot’ | ’semilogx’ | ’semilogy’ | ’loglog’}
proBar : reference to a progress bar, if available

FORMAT genericFileName : #Generation D(I1) D(I2) ... D(In) where D=
Distance, I=Individual, n=popSize

Output:
nbGenerations : number of generations in Wyrd for this optimization
popSize : size of population (Evolutionary Algorithm)

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

bestRun

(resizeProgressBar)

This function is called by:

wyrdReport

100

Chapter F: Matlab Scripts Documentation

F.6 printGrnTopology

PURPOSE

PRINTGRNTOPOLOGY - Reads a Wyrd XML file which describes a Gene Regulatory
Network (see Wyrd Handbook for the format) and builds a graphic representation using
neato of Graphviz.

SYNOPSIS

[numGenes,genesName,W,paramName,paramData] = printGrnTopology(repos, xml-
File)

DESCRIPTION

Input:
repos : path of the repository (no ’/’ at end) which contains xmlFile
xmlFile : GRN XML file

Output:
numGenes ...: number of genes in the GRN
genesName : list of all gene’s names
W : weights matrix
paramName : list of all parameter’s names of all genes
paramData : vector of all parameter’s value of all genes

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

parseChildNodes

This function is called by:

wyrdReport

101

Scalable Reverse Engineering of Nonlinear Gene Networks

F.7 printSquareError

PURPOSE

PRINTSQUAREERROR - Reads square error logs files generated during Wyrd pro-
cesses and builds graphics representations.

SYNOPSIS

[nbGenerations, popSize] = printSquareError(numGenes, repos, genericFileName,
scale)
[nbGenerations, popSize] = printSquareError(numGenes, repos, genericFileName,
scale, proBar)

DESCRIPTION

Input:
numGenes...........: number of genes in Genes Regulatory Network
repos : path of the repository (no ’/’ at end) which contains

distances logs files (CSV format)
genericFileName : generic filename of distances log files
scale : type of graph representation

{’plot’ | ’semilogx’ | ’semilogy’ | ’loglog’}
proBar : reference to a progress bar, if available

FORMAT genericFileName : #Generation D(I1) D(I2) ... D(In) where D=
Distance, I=Individual, n=popSize

Output:
nbGenerations : number of generations in Wyrd for this optimization
popSize : size of population (Evolutionary Algorithm)

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

bestRun

(resizeProgressBar)

This function is called by:

wyrdReport

102

Chapter F: Matlab Scripts Documentation

F.8 printTimeSeries

PURPOSE

PRINTTIMESERIES - Reads Time Series experiments datasets generated during
Wyrd process (CSV format) and builds graphic representations.

SYNOPSIS

numTimeSeriesExp = printTimeSeries(numGenes, repos, inputFile)
numTimeSeriesExp = printTimeSeries(numGenes, repos, inputFile, proBar)

DESCRIPTION

Input:
numGenes : number of genes in the Genes Regulatory Network
repos : path of the repository (no ’/’ at end) which contains

distances logs files inputFile
inputFile : generic filename of Time Series Experiments (CSV format)
proBar : reference to a progress bar, if available

FORMAT inputFile : ”Time” ”G0” ”G1” ... ”GN”
t00 G0mRNA G1mRNA ... | Time
t01 ... | Series
... | Experiment
t0n ... | 0
t1n
...

. . .

tmn ...

Output:
numTimeSeriesExp : the number of Time Series Experiments

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

readColData

(resizeProgressBar)

This function is called by:

wyrdReport

103

Scalable Reverse Engineering of Nonlinear Gene Networks

F.9 resizeProgressBar

PURPOSE

RESIZEPROGRESSBAR - Handles the size of an improvised progress bar for Matlab
GUI.

SYNOPSIS

resizeProgressBar(bar, orient, usableSize)

DESCRIPTION

This progress bar is based on the use of a ’text’ (style) uicontrol, defined by no ’String’
and color background different of the interface background color.

Input:
bar : reference to the uicontrol ’text’ (style of the uicontrol)
orient : the orientation of progress bar

{0 := horizontal | 1 := vertical}
usableSize : the subtracted size

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

set

This function is called by:

printDistances

printSquareError

printTimeSeries

wyrdReport

104

Chapter F: Matlab Scripts Documentation

F.10 set

PURPOSE

SET - Gathers all get methods of wrInitCore instance, in order to set wrInitCore’s
properties.

SYNOPSIS

obj = set(obj, propName, value)

DESCRIPTION

Input:
obj : instance of wrInitCore
propName : the name of the property that we will modify
value : set propName with value

Output:
obj : modified instance of wrInitCore

CROSS-REFERENCE INFORMATION

This function calls:

-

This function is called by:

resizeProgressBar

wrgui

wyrdReport

105

Scalable Reverse Engineering of Nonlinear Gene Networks

F.11 wrInitCore

PURPOSE

WRINITCORE - This class includes all properties necessary to the right process of
Wyrd Reports Generator. The values hard coded in this file can be used as default
settings for Wyrd Report processes.

SYNOPSIS

wrInit = wrInitCore()

DESCRIPTION

Input:
-

Output:
wrInit : new instance of wrInitCore

CROSS-REFERENCE INFORMATION

This function calls:

-

This function is called by:

bestRun

printDistances

printGrnTopology

printSquareError

printTimeSeries

wrgui

writeGrnPart

writeIndex

writeMenu

writeTsPart

wyrdReport

106

Chapter F: Matlab Scripts Documentation

F.12 writeGrnPart

PURPOSE

WRITEGRNPART - Writes the GRN part of Wyrd reports.

SYNOPSIS

writeGrnPart(htmlFile, globVar)

DESCRIPTION

WRITEGRNPART writes the GRN part of Wyrd reports, containing experiment’s
generalities, GRN topologies representations (uses Graphviz), gene’s optimizations with
distance (fitness, between target and evolved datasets) and square error (mean square
errors between target (if available) and evolved gene’s parameters).

Input:
htmlFile : flow to the main page HTML file
globVar : specific structure that contains several parameters extracted during

previous operations (numGenes, genesName, etc.) in wyrdReport
script.

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

bestRun

This function is called by:

wyrdReport

107

Scalable Reverse Engineering of Nonlinear Gene Networks

F.13 writeIndex

PURPOSE

WRITEINDEX - Create the HTML index file index.html of Wyrd reports.

SYNOPSIS

writeIndex()

DESCRIPTION

Input:
-

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

This function is called by:

wyrdReport

108

Chapter F: Matlab Scripts Documentation

F.14 writeMenu

PURPOSE

WRITEMENU - Create the HTML menu file menu.html of Wyrd reports.

SYNOPSIS

writeMenu()

DESCRIPTION

Input:
-

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

This function is called by:

wyrdReport

109

Scalable Reverse Engineering of Nonlinear Gene Networks

F.15 writePredictions

PURPOSE

WRITEPREDICTIONS - Writes prediction confidences lists and processes PR or ROC
analysis.

SYNOPSIS

[area, x, y] = writePredictions(numGenes, loop, statfile, thres, curve, sign, targetType,
targetW)

DESCRIPTION

Input:
Necessary to write prediction confidences list:

numGenes : number of genes in the Gene Regulatory Network
loop : if auto gene connections permitted, loop=1, esle 0.
statfile : batch file of Wyrd optimizations. More generally, this file

must have the following structure (illustrated with Matlab
syntax): [Wi=1;Wi=2;...] where Wi are the the weights
matrix found at ith run of Wyrd or by another method. So,
each line contain at least (numGenes-1) elements if loop=0
and file contains numGenes x numGenes lines. Each elements
must be separated by a tab. For more informations,
see CONFIDENCE help.

thres : threshold, see CONFIDENCE help.

Necessary to process PR or ROC analysis:
curve : type of analysis {’pr’ | ’roc’}
sign : type of weights

{1=positive weights | 0=negative weights}
targetType : specify the form of the given target GRN topology

{’xml’=Wyrd XML GRN file | ’mat’=Matlab matrix}
targetW : target GRN topology (weights matrix). If targetType=

’xml’, targetW is a file, if targetType=’mat’,
targetW is a Matlab matrix of size numGenes x numGenes

Output:
area : Area Under Curve
x : x-axis. Recall if curve=’pr’, FPR if curve=’roc’
y : y-axis. Precision if curve=’pr’, TPR if curve=’roc’

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

110

Chapter F: Matlab Scripts Documentation

CROSS-REFERENCE INFORMATION

This function calls:

computePR

confidence

parseChildNodes

strsplit

This function is called by:

-

111

Scalable Reverse Engineering of Nonlinear Gene Networks

F.16 writeSsPart

PURPOSE

WRITESSPART - Writes Steady-States results.

SYNOPSIS

writeSsPart(htmlFile, globVar)

DESCRIPTION

WRITEGRNPART writes the GRN part of Wyrd reports, containing experiment’s
generalities, GRN topologies representations (uses Graphviz), gene’s optimizations with
distance (fitness; between target and evolved datasets) and square error (mean square
errors between target (if available) and evolved gene’s parameters).

Input:
htmlFile : flow to the main page HTML file
globVar : specific structure that contains several parameters extracted during

previous operations (numGenes, genesName, etc.) in wyrdReport
script.

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

-

This function is called by:

wyrdReport

112

Chapter F: Matlab Scripts Documentation

F.17 writeTsPart

PURPOSE

WRITETSPART - Writes Time Series result, mainly Time Series integration curves,
one by gene and by experiment.

SYNOPSIS

writeTsPart(htmlFile, globVar)

DESCRIPTION

WRITEGRNPART writes the GRN part of Wyrd reports, containing experiment’s
generalities, GRN topologies representations (uses Graphviz), gene’s optimizations with
distance (fitness; between target and evolved datasets) and square error (mean square
errors between target (if available) and evolved gene’s parameters).

Input:
htmlFile : flow to the main page HTML file
globVar : specific structure that contains several parameters extracted during

previous operations (numGenes, genesName, etc.) in wyrdReport
script.

Output:
-

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

wrInitCore

This function is called by:

wyrdReport

113

Scalable Reverse Engineering of Nonlinear Gene Networks

F.18 wyrdReport

PURPOSE

WYRDREPORT - Generates a HTML report from Wyrd log files.

SYNOPSIS

wyrdReport() : Default use
wyrdReport(wrInit) : Uses a given wrInitCore instance previously

and called wrInit instantiated.
wyrdReport(wrInit, guiHandles) : If called by a Graphical Interface

DESCRIPTION

WYRDREPORT generates a HTML report from Wyrd log files generated during a
wyrd process. The report is divided into three parts:
- Generalities: target (if available) and evolved GRN topologies, and for each
optimization, distance (fitness) and square errror representation. The best solution
for each optimization are also displayed.
- Steady-States Experiments informations
- Time Series Experiments: for each experiment and for each gene, the integration
curves of target and evolved GRN are displayed on the same graph. The mean square
distance on all points for each integrations are also displayed.

To illustrate report, several pictures are processed. The script tools used for this are
the following:

- Grn topologies : printGrnTopology.m (uses Graphviz)
- Distance graphs : printDistances.m
- Square Error graphs : printSquareError.m
- Time Series Integrations : printTimeSeries.m

HTML pages are written by many scripts:

- index.html : writeIndex.m
- menu.html : writeMenu.m
- ’reportId’.html -> Grn part : writeGrnPart.m
- ’reportId’.html -> SS part : writeSsPart.m
- ’reportId’.html -> TS part : writeTsPart.m

Input:
wrInit : wrInitCore instance. See the following IMPORTANT note.
guiHandles : structure of all graphical control of a GUI.

Output:
-

114

Chapter F: Matlab Scripts Documentation

IMPORTANT: Need a Wyrd Initializing Core called wrInit! Can be created
before calling the present script with wrInit = wrInitCore(); instruction.
If it does not already exist, this object will be created.

CROSS-REFERENCE INFORMATION

This function calls:

get

set

wrInitCore

printDistances

printGrnTopology

printSquareError

printTimeSeries

(resizeProgressBar)

writeGrnPart

writeIndex

writeMenu

writeSsPart

WriteTsPart

This function is called by:

wrgui

115

