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SI Results and Discussion. Best performance methods did consistently
well across sizes.We provided subchallenges with networks of size
10, 50, and 100 in order to compare the performance of inference
methods on different network sizes. From the 29 methods that
were applied to the networks of size 10, all but two were also ap-
plied to the networks of size 50. The two teams that participated
only in the subchallenge with networks of size 10 did not benefit
from specializing on small networks. They ranked 22nd and 27th,
and their predictions were not significantly better than random
predictions (overall p-values of 0.24 and 0.44, respectively). After
removing these two methods from the ranking, we compared the
relative performance of methods on networks of size 10 and size
50 (Fig. S2A). The best and the second-best methods were the
same in both subchallenges. The methods from ranks 3 to 7
are also the same for both network sizes, though not in the same
order. Thus, the methods that performed best on the small
networks of size 10 also performed best on the intermediate
networks of size 50.

Similar observations can be made when comparing the ranking
of the 22 methods that were applied both to networks of size 50
and 100 (Fig. S2B). In this case, the correlation between the two
rankings is even stronger. A notable exception is the method
that ranked second on networks of size 10 and size 50, which
ranked only 15th on networks of size 100. Even though the pre-
dictions of this method were of excellent quality for networks of
size 50 (overall p-value <10−31), they were barely significant for
networks of size 100 (overall p-value ¼ 0.01). In summary, best
performance methods did consistently well across sizes, with
few exceptions.

The top five methods are all based on a different approach. As men-
tioned in the main text, the most common types of approaches for
network inference were all represented among the successful
teams of the challenge. The identities of the top-five teams
are given in Table S1. B Team relied strongly on a Gaussian model
of the noise (2), which will be discussed more in detail in the fol-
lowing sections. The teams Bonneau and Zuma inferred different
types of dynamical network models. Team Bonneau applied and
extended a previously described algorithm, the Inferelator (3, 4),
which uses regression and variable selection (5). Team Zuma in-
troduced a nonparametric dynamical model that was inferred
using a Bayesian approach (6). The teams Usmtec347 and Intigern
applied yet unpublished inference methods. The method of team
Usmtec347 was based on dynamic Bayesian networks. Team In-
tigern integrated predictions obtained using different correla-
tion-based and information-theoretic measures.

Systematic prediction errors due to network motifs. We performed
the network-motif analysis for all methods that inferred networks
of size 50 and size 100 (networks of size 10 are too small for a
statistically significant analysis). For the best five methods of
the networks of size 100, the results are graphically represented
and discussed in Fig. S3. A detailed description of the methodol-
ogy is given in SI Methods. As discussed in the main text, we found
that inference methods are affected by three types of systematic
prediction errors. Fig. S3 shows that the inference methods have
different strengths and weaknesses: whereas some are more ro-
bust to certain types of error, they are more strongly affected by
other types of errors.

In Fig. 4 of the main text, we discussed the three types of sys-
tematic prediction errors: the fan-out error (incorrect prediction

of interactions between coregulated genes), the fan-in error
(inaccurate prediction of combinatorial regulation), and the cas-
cade error (failure to distinguish direct from indirect regulation).
In the more detailed analysis of Fig. S3C, two additional, minor
effects can be observed.

First, in addition to the incorrectly predicted “shortcuts”
(1 → 3) in cascades, some inference methods have a slightly
reduced prediction confidence for the true edges of cascades
(1 → 2 and 2 → 3). This may be due to: (1) incorrect prediction
of the shortcut 1 → 3 instead of (and not in addition to) the true
links 1 → 2 → 3 and/or (2) a tendency for cascades to overlap
with fan-ins.*

Second, the three links of feed-forward loops (FFLs) often
have a reduced prediction confidence. This can be explained
by the same types of systematic errors that occur in fan-ins
and cascades. The links 1 → 3 and 2 → 3 of FFLs form a fan-
in, and are thus affected by the fan-in error. The links 1 → 2 →
3 form a cascade, thus, they have a reduced prediction confidence
for the same reason as the corresponding links in the cascade mo-
tif. One minor effect remains to be explained: in FFLs, the pre-
diction confidence was often slightly lower for edge 1 → 3 than
for edge 2 → 3. For example, this is the case for all except the
best-performer method in Fig. S3C. It seems that in addition
to the fan-in error, which affects both these edges, the edge 1 →
3 is also affected by an additional systematic error, which could be
called the FFL-error. This error occurs when a method interprets
the variation of gene 3 to be due solely to the indirect regulation
via gene 2ð1 → 2 → 3Þ, instead of both the indirect and the direct
regulation ð1 → 2 → 3 and 1 → 3). However, since this effect was
negligible compared to the fan-in error that affects these edges,
we did not consider it as a fourth type of main prediction error.

We conclude that the fan-out, fan-in, and cascade errors are
the three main types of systematic prediction errors observed
on three-node motifs, and that inference methods are differen-
tially affected by these errors. The network-motif analysis, de-
monstrated here using three-node motifs, could potentially be
extended to colored motifs, higher-order motifs, or to the net-
work dynamics by considering activity motifs (7), for instance.

Systematic prediction errors due to the indegree and outdegree of
genes. Methods that are affected by the fan-in error have a re-
duced prediction confidence for edges that target genes with
two or more inputs. Fig. 5 of the main text shows how the inde-
gree of genes affects the prediction confidence for the best five
methods on the networks of size 100. We have performed this
analysis for all inference methods that were applied to networks
of size 50 and 100, which confirms that the best-performer meth-
od had the most robust performance on high indegrees (Fig. S4).

As control, we did the same analysis also for the outdegree of
genes. As expected, in contrast to the indegree, the increasing
outdegree of genes does not affect the prediction confidence
of links (Fig. S4).

Inaccurate prior assumptions induce systematic prediction errors.
One of the difficulties that participants of the DREAM challenge
had to face was that they did not know details of the kinetic model
that was used to generate the gene expression data. This difficulty
is even more pronounced in biological applications, where the

*Note that motifs do not occur in isolation in networks and edges usually pertain to sev-
eral “overlapping” motif instances. We intend to investigate potential effects due to
overlapping motifs in future work.
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mechanisms and kinetics of gene regulation underlying the
expression data are more complicated, and also not known in ad-
vance. Thus, inference methods are bound to make simplifying
prior assumptions, e.g., by adopting a linear gene network model,
to name just one example.

However, if the prior assumptions are inaccurate, they may
lead to systematic prediction errors. For example, the best-
performing team strongly relied on an inference method based
on a very simple principle: it predicts an interaction from gene
A to gene B if, after a knockout of A, there is a significant change
in the expression level of B. The significance of a change in the
expression level was estimated using a Gaussian model of the
noise in the gene expression data (2). This method is based on
the inaccurate prior assumption that the change in the expression
level of gene B is always due to a direct regulatory interaction
A → B (in reality, it may also be due to an indirect interaction
via other genes, e.g. A → C → B). This inaccurate prior assump-
tion induced systematic cascade errors (see Fig. S3).

However, the best-performer method was also the most robust
of all applied methods to the fan-in error (Fig. S3), i.e., it had
better performance than other methods on genes that are
combinatorially controlled by multiple regulatory inputs. Inter-
estingly, the best-performer method makes a strong prior as-
sumption on the type of noise in the gene expression data
(Gaussian), but remains uncommitted to the type of regulatory
dynamics in the networks. In contrast, according to our survey
among the participants, other inference methods tend to make
strong assumptions on the regulatory dynamics (e.g., by adopting
simple, often linear, phenomenological functions to approximate
combinatorial regulation of genes by multiple regulators). These
assumptions are partly inaccurate compared to the more detailed,
kinetic model of the benchmarks (they may be even less accurate
compared to the complicated mechanisms and kinetics of bio-
logical gene networks, as discussed in the following sections).
Consequently, these methods have a strongly reduced perfor-
mance on genes with multiple regulatory inputs (the fan-in error),
where their prior assumptions are inaccurate.

Is simpler better? The relatively low performance of the majority
of methods might suggest that very sophisticated techniques
were required to reliably infer the networks. This was not
the case.

The best performer-team used four different models to infer
the networks, including the Gaussian model of the noise men-
tioned in the previous section and three Ordinary Differential
Equation (ODE) models (2). They intended to combine the pre-
dictions from the four models, however, finally they mainly re-
lied on the predictions derived from the simple model of the
noise and added only few of the predictions from the ODE mod-
els at lower ranks. Thus, the excellent quality of their predictions
is mainly due to the performance of the simple method based on
the model of the noise. We have confirmed this by showing that
a very similar, but even simpler method, would have obtained
approximately the same performance. We used only the knock-
out dataset. For every gene i, we computed the mean expression
level μi and the standard deviation σi. Next, we evaluated how
much the expression level xij of gene i in the knockout experi-
ment of gene j changed by the Z-score zij ¼ ðxij − μiÞ∕σi. The
absolute value of zij was used as a measure of confidence for
the edge from gene j to gene i, i.e., the lists of predictions were
ordered according to the absolute values of the Z-scores. This
method would have ranked second on the networks of size 10,
first on the networks of size 50, and it would have tied for the
first place with the best-performer method on the networks of
size 100.

The Z-score method outlined in the previous paragraph is ar-
guably one of the simplest conceivable network inference ap-
proaches. As the best-performer method based on the

Gaussian model of the noise, it is based on the inaccurate as-
sumption that any change in the expression level of a gene is
due to a direct regulatory interaction, which induces systematic
cascade errors (see previous section). Still, this “naive” approach
consistently outperformed more sophisticated, state-of-the-art
methods in this benchmark.

The fact that simple, but effective methods can often outper-
form more advanced, theoretically motivated approaches has al-
ready been observed in several in vivo challenges of the previous
edition of DREAM. For example, Baralla et al. used both a sim-
ple approach based on Pearson or Spearman correlation, and a
more advanced approach based on partial correlation analysis,
in challenges 1 and 3 of DREAM2 (9). The goal in DREAM2
challenge 1 was to predict the direct regulatory targets of the
human transcription-factor BCL6 from a collection of microar-
ray experiments, and the goal of Challenge 3 was to infer the
structure of an in vivo synthetic-biology network in yeast from
two time-series datasets (10, 11). As Baralla et al. note: “[the]
simpler approaches completely outperformed the more elegant
partial correlations approach, presumably because the latter ap-
proach relies more strongly on the correctness of underlying as-
sumptions” (9).

The results reported here support this conclusion: sophisti-
cated methods that would in theory be expected to perform better
than the “naive” approach described above, were more strongly
affected by inaccurate prior assumptions in practice, as discussed
in the previous section. Note that these observations do not imply
that always simpler methods perform better. If their underlying
assumptions are correct, advanced methods based on more accu-
rate models would be expected to outperform the simple ap-
proaches described above. In other words, the method and its
assumptions has to adapt to the type of data at hand.

Reliable gene network inference from gene expression data remains
an unsolved problem. The performance of most reverse engineer-
ing methods was unsatisfactory (see Discussion of the main text).
Although the measured performance is in principle specific to the
in silico networks used here, it is unlikely that a method would
perform better in an equivalent in vivo application. First, we pro-
vided much more and better quality data than is typically avail-
able in biological applications (knockouts and knockdowns for
every gene, plus dozens of time series). Secondly, the prior as-
sumptions of inference methods are in general more accurate,
and would thus be expected to lead to better predictions, for
the in silico networks than for biological gene regulatory net-
works. For example, biological gene networks have additional
layers of control, such as posttranscriptional regulation, which
are not modeled by prevalent gene network inference methods.
We could list many more points in which the prior assumptions of
current network inference methods are more accurate, and would
thus be expected to lead to better predictions, for the in silico
networks than for biological gene regulatory networks.

It should be noted that some methods may perform better
using other types of experimental data. For example, linear
models only provide a good approximation of the nonlinear dy-
namics for weak perturbations, as Tegner et al. note: “[…] if the
perturbation is too large, the gene network will be pushed out-
side of its linear response regime and this will weaken the algo-
rithms assumption of linearity. As a result, the error in the
predicted network will increase” (8). For this reason, we pro-
vided in addition to the knockout data, where the expression
of genes is completely suppressed, also knockdown data, where
the expression of genes is only reduced by half. However, it may
be that the knockdowns were still too strong of a perturbation for
the linear assumption to hold, and that the performance of the
methods based on linear models would be better when using
weaker perturbations.
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Community predictions are more reliable than individual inference
methods. In the main text, we have discussed the performance
of community predictions on the networks of size 10. Here, we
first describe in more detail how we combined predictions of
participating teams, and then we analyze the performance of
the resulting community predictions for all network sizes.

Remember that the submission format of the DREAM3
in silico challenge was a ranked list of edge predictions. The
question is thus how to optimally combine an ensemble of such
lists, submitted by different participating teams, to form a com-
munity prediction.

We use a straightforward approach to combine the ensemble
of edge-prediction lists, which consists of simply taking the aver-
age rank for each edge. Thus, the list of edge predictions of the
community is ordered according to the average ranks of the edges
in the ensemble, as illustrated in Fig. S5.

As described in the main text, we systematically formed com-
munities composed of the top-two methods, the top-three meth-
ods, the top-four methods, etc., until the last community, which
contains all applied methods of a particular subchallenge (there
are three subchallenges corresponding to networks of size 10, 50,
and 100). Here, we formed in addition community predictions
without including the best-performers, i.e., we removed the best-
performing team and then formed communities composed of the
top-two methods, top-three methods, etc. For each of these com-
munities, we derived community predictions for the five networks
of the subchallenge.

The scores of both the community predictions and the indivi-
dual teams are shown in Fig. S6. Some of the community predic-
tions outperform the best-performing team on networks of size 10
and size 50. For example, the community of the top-five teams
would have won these two subchallenges. As more and more
teams with a bad performance are added to the community,
the accuracy of the community prediction decreases. However,
the performance is remarkably robust. Even when combining
all methods, the majority of which have low scores (remember
that about a third of the methods did not perform better than
random guessing), the community prediction still ranks second
on networks of size 10 and 100, and third on networks of size 50.

The robustness of the community predictions is even more evi-
dent in the communities that don’t include the best-performer
(the squares in Fig. S6). For example, the community composed
of all teams (second-place to last-place) outperforms the second-
place team on networks of size 100. In summary, the community
predictions are consistently as good or better than the best meth-
ods of the ensemble, and this even when the majority of the meth-
ods of the ensemble have a low performance.

SI Methods. Gene network model. We model transcriptional
regulatory networks consisting of genes, mRNA, and proteins.
The state of the network is given by the vector of mRNA
concentrations x and protein concentrations y. We model only
transcriptional regulation, where regulatory proteins (transcrip-
tion factors) control the transcription rate (activation) of
genes. The gene network is modeled by the system of differ-
ential equations

dxi
dt

¼ mi · f iðyÞ − λRNA
i · xi [S1]

dyi
dt

¼ ri · xi − λProti · yi; [S2]

where mi is the maximum transcription rate, ri the translation
rate, λRNA

i and λProti are the mRNA and protein degradation rates,
and f ið·Þ is the so-called input function of gene i. The input func-
tion computes the relative activation of the gene, which is between

0 (the gene is shut off) and 1 (the gene is maximally activated),
given the transcription-factor (TF) concentrations y.

Gene regulation is modeled using a standard approach based
on thermodynamics (12, 13). Good introductory texts are refer-
ences (14, 15). The basic assumption of this approach is that bind-
ing of TFs to cis-regulatory sites on the DNA is in quasi-
equilibrium, since it is orders of magnitudes faster than transcrip-
tion and translation. In the most simple case, a gene i is regulated
by a single TF j. In this case, its promoter has only two states:
either the TF is bound (state S1) or it is not bound (state S0).
The probability PfS1g that the gene i is in state S1 at an instant
in time is given by the fractional saturation, which depends on the
TF concentration yj

PfS1g ¼ χ j
1þ χ j

with χj ¼
�
yj
kij

�
nij
; [S3]

where kij is the dissociation constant and nij the Hill coefficient.
At concentration yj ¼ kij the saturation is half-maximal, i.e., the
promoter is bound by the TF 50% of the time. Many TFs bind
DNA as homodimers or higher homooligomers. This and other
mechanisms that affect the effective cooperativity of promoter
binding are approximated by the Hill coefficient nij, which deter-
mines the “steepness” of the sigmoid described by Eq. 3.

The bound TF activates or represses the expression of the
gene. In state S0 the relative activation is α0 and in state S1 it
is α1. Given PfS1g and its complement PfS0g, it is straightforward
to derive the input function f iðyjÞ, which computes the mean ac-
tivation of the gene as a function of the TF concentration yj

f ðyjÞ ¼ α0PfS0g þ α1PfS1g ¼ α0 þ α1χ j
1þ χ j

: [S4]

This approach can be used for an arbitrary number of regula-
tory inputs. A gene that is controlled byN TFs has 2N states: each
of the TFs can be bound or not bound. Thus, the input function
for N regulators would be

f ðyÞ ¼ ∑
2N−1

m¼0

αmPfSmg: [S5]

Using thermodynamics, it is straightforward to compute the prob-
ability PfSmg for every statem. For example, the resulting expres-
sion for a gene with two inputs is

f ðy1; y2Þ ¼
α0 þ α1v1 þ α2v2 þ α3ρv1v2

1þ v1 þ v2 þ ρv1v2
[S6]

with vj ¼ ðyj∕kjÞnj , where nj is the Hill coefficient, kj the dissocia-
tion constant, ρ the cooperativity factor, and αs are the relative
activations when none of the TFs (α0), only the first (α1), only the
second (α2), or both TFs are bound (α3).

We nondimensionalize the gene network models as described
in the Supplementary Information of reference (16). As von Das-
sow et al. note: “This entails replacing every occurrence of dimen-
sioned state variables (concentrations of molecular species and
time) with scaled products yielding new state variables free of
units. […] The dimensionless model is identical to the dimen-
sional one since it is merely an algebraic transformation.” (16).
One of several advantages of nondimensionalization is that it
is much more easier to generate biologically plausible instances
of the dimensionless model. We will provide a more detailed de-
scription of the gene network model and the nondimensionaliza-
tion elsewhere.

Clearly, the model outlined above is still extremely simplied
compared to the real biological mechanisms. However, two of
the key simplifying assumptions of most reverse engineering
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methods based on dynamical models are not made. First, mRNA
and proteins are not lumped into a single state variable. Second,
the gene regulation function is not phenomenologically approxi-
mated by additive or multiplicative terms, but is derived using the
thermodynamic approach. One consequence of the thermodyna-
mical model is that it can express all types of regulatory logic
(AND, OR, etc). We have initialized the networks of the
DREAM3 in silico challenges such that there is approximately
equal amounts of independent and synergistic gene regulation.
Thus, a priori neither the additive nor the multiplicative phenom-
enological modeling approach used in gene network reverse en-
gineering should be favored in these benchmarks.

Simulation of gene expression data. Gene knockouts were simu-
lated by setting the maximum transcription rate mi of the deleted
gene to zero, knockdowns by dividing it by two. Time-series ex-
periments were simulated by integrating the networks using dif-
ferent initial conditions. For the networks of size 10, 50, and 100,
we provided 4, 23, and 46 different time series, respectively.†

For each time series, we used a different random initial con-
dition for the mRNA and protein concentrations. The initial
mRNA concentrations xið0Þ were obtained by adding a random
number from a Gaussian distribution with mean zero and stan-
dard deviation 0.5 to the wild-type steady-state level of every
gene. We assume that the multifactorial perturbation that led
to the perturbed state xið0Þ was applied for sufficient time for
the protein levels to stabilize at their new steady state. Thus,
the initial protein concentrations were obtained by setting
dyi∕dt ¼ 0 in Eq. 2

yið0Þ ¼
ri

λProti

· xið0Þ: [S7]

Each time series consists of 21 time points (from t ¼ 0 until
t ¼ 200). Trajectories were obtained by integrating the networks
from the given initial conditions using a Runge-Kutta 4∕5 solver
with variable step size of the Open Source Physics library (17).

White noise with a standard deviation of 0.05 was added after
the simulation to the generated gene expression data. Concentra-
tions that became negative due to the addition of noise were set
to zero.

Network-motif analysis. The goal of the network-motif analysis is
to evaluate, for a given network inference method, whether some
types of edges of motifs are systematically predicted less (or
more) reliably than expected. This involves: (1) determining
the prediction confidence of edges pertaining to different motifs,
(2) determining the expected prediction confidence indepen-
dently of motifs (the background prediction confidence), and
(3) evaluating whether divergences of the prediction confidence
of motif edges from the expected prediction confidence are sta-
tistically significant (cf. Fig. S3).

Definition of prediction confidence. Given a network prediction in
the format described in the main text, we define the prediction
confidence of edges as their rank in the list of edge predictions.
We scale the prediction confidence such that the first edge in the
list has confidence 100%, and the last edge in the list has confi-
dence 0%.

Determining prediction confidence of motif edges. First we need to
identify all three-node motif instances in the target network (the
same approach could be used for higher-order motifs). We use
the efficient algorithm of Wernicke for this purpose (18). Next,
for every type of motif edge, we determine the prediction confi-
dence of all its instances. For example, we identify all links of type
1 → 2 of cascades in the target network (the numbering of the
nodes of the motifs is defined in Fig. S3), and we record the pre-
diction confidences that were assigned to these links by the given
network inference method. More formally, we construct the set
C1→2
cascade ¼ fckg, where ck is the prediction confidence of the link

1 → 2 in the k’th cascade of the target network. Note that we also
record the prediction confidences of “absent edges” of the motifs,
for example, C1→3

cascade is the set of prediction confidences of the
“shortcuts”.

For every motif typem, we determine the set of prediction con-
fidences assigned by the inference method to each of its six pos-
sible edges (C1→2

m , C1→3
m , C2→1

m , C2→3
m , C3→1

m , and C3→2
m ). Note that

fan-in as well as fan-out motifs are symmetric: nodes 2 and 3 can’t
be distinguished (see Fig. S3). Thus, both fan-ins and fan-outs
have only three types of edges: 1 → 2, 2 → 1, and 2 → 3. The
edges 1 → 3, 3 → 1 and 3 → 2 are equivalent to 1 → 2, 2 → 1,
and 2 → 3, respectively. The prediction confidence of equivalent
edges is recorded in the same set. For example, the set C1→2

fanout
contains all prediction confidences assigned by the inference
method to outgoing edges of fan-outs (1 → 2 or 1 → 3).

Determining the background prediction confidence. Before we
can analyze the effect of motifs on the edge-prediction confi-
dence, we first need to determine the expected edge-prediction
confidence independently of motifs. There are three types of pre-
dicted edges:

1. Predicted edges that are true edges of the target network.
Their background prediction confidence is given by Ctrue_edge,
which is the set of prediction confidences that were assigned by
the inference method to the edges that are part of the target
network.

2. Predicted edges for which the directionality is incorrect. We
call these back edges. Their background prediction confidence
is given by Cback_edge, which is the set of prediction confidences
assigned to edges B → A that are not part of the target net-
work, but for which the edge in the opposite direction
A → B is part of the target network.

3. Predicted edges between two nodes that are not connected by
an edge in the target network. We call these absent edges.
Their background prediction confidence is given by
Cabsent_edge, which is the set of confidences of predicted edges
between nodes that are not directly connected in the target
network.

Note that in Fig. S3B, we have only shown the median predic-
tion confidence of true edges (1 → 2) and back edges (2 → 1)—
the median prediction confidence of absent edges was
not shown.

Evaluating the divergence of the prediction confidence of motif edges
from the background prediction confidence. We use the Wilcoxon-
Mann-Whitney rank-sum test to compare the motif edge-
prediction confidences with their corresponding background pre-
diction confidence. The prediction confidence of true edges of
motifs (e.g., C1→2

cascade and C2→3
cascade) are compared with Ctrue_edge,

the prediction confidence of back edges of motifs (e.g., C2→1
cascade

and C3→2
cascade) are compared with Cback_edge, and absent edges of

mot i f s (e . g . , C1→3
cascade and C3→1

cascade) a re compared wi th
Cabsent_edge. We use Bonferroni correction for multiple hypothesis
testing.

†For networks of size 50, we provided the same number of time series (23) as PedroMendes
did for his networks of size 50 in the DREAM2 in silico challenges, to allow comparison of
results between the two challenges. For networks of size 10 and 100, we scaled the num-
ber of provided time series with the network size (two times more for size 100, five times
less for size 10).
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Fig. S1. Two target (gold standard) networks of size 100. (A) was extracted from an E.coli and (B) from a yeast gene network (see Methods of the main text).
The graphs of all target networks of the challenge are available in the file DREAM3 In Silico Challenges.zip on the GeneNetWeaver website (1).
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Fig. S2. Best performance methods did consistently well across sizes. (A) The rankings of the 27 teams that participated both in the subchallenges with
networks of size 10 and 50. The methods with a good rank on networks of size 10 also performed well on networks of size 50 (points in the bottom-left
corner of the plot). (B) The rankings of the 22 teams that participated both in the subchallenges with networks of size 50 and 100. The ranking is very similar in
the two subchallenges. A notable exception is the second-place method on networks of size 50, which had a poor performance on networks of size 100
(indicated by the arrow).
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Fig. S3. Inference methods are differentially affected by systematic prediction errors. The first column shows the true connectivity of the motifs, the following
columns show how theywere predicted by the best fivemethods of the networks of size 100. (A) Median prediction confidence (see SI Methods for a definition)
of the different edges (same as Fig. 4 of main text). Note that the third and fourth-place methods apparently can’t distinguish the directionality of edges. (B)
The background prediction confidence, which is the median prediction confidence of all links of the network, independently of which motifs they belong to. If
themotifs had no effect on the prediction confidence, all edges of themotifs would be inferredwith this background prediction confidence. (C) The divergence
of the prediction confidence of the different motif edges from the background prediction confidence. The darkness of the links is proportional to the dif-
ference of the motif prediction confidence (A) from the background prediction confidence (B). Dashed arrows indicate a reduced, solid arrows an increased
median prediction confidence. All differences are statistically significant at a level of 0.01 using a two-sided Wilcoxon-Mann-Whitney rank-sum test and Bon-
ferroni correction for multiple hypothesis testing, except for the marked edges (*). The five methods are affected to various degrees by the three systematic
prediction errors discussed in Fig. 4 of the main text. The second, third, and fourth-place methods have a tendency for false positives between coregulated
genes (fan-out error). All methods have a reduced prediction confidence for edges that target genes with multiple inputs (fan-in error), but the best-performer
method to a lesser degree than the others. However, the best-performer method has one of the strongest cascade errors (shortcuts 1 → 3). Since the third and
fourth-place methods can’t infer the directionality of interactions, the wrongly predicted “shortcut” appears in both directions.
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Fig. S4. How the indegree and outdegree of genes affects the prediction confidence. The first row shows, for the best five methods on the networks of size
100 and size 50, the median prediction confidence assigned to edges of varying indegree of target genes and outdegree of regulators (the prediction con-
fidence of an edge is its rank in the list of edge predictions, as defined above for the network-motif analysis). The shaded areas indicate 95% confidence
intervals for the medians. Note that the top-five methods (first row) are not all the same for networks of size 100 and size 50 (see legends). (A, E) Single-input
links were reliably predicted with a similar, high prediction confidence by several inferencemethods (points in the top left corner). However, for all but the best-
performer method, the performance drops drastically for higher indegrees. Note that the results for the smaller networks of size 50 are noisier, and the
confidence intervals wider, due to the smaller sample sizes. We summarized these plots by fitting for every method a line through the curve: (C, G) show
the y-intercept and the slope of the fitted lines for all methods, which summarize the performance on single inputs and the robustness to the fan-in error,
respectively. A linear regression analysis (dashed line, the shaded area is the 95% prediction interval) confirms that the best-performer method (Yip et al.) is an
outlier. It has the most robust performance on high indegrees (flattest slope) of all methods that have a reasonably high score (y-intercept >75%). The results
for networks of size 50 are noisier, but consistent with the observations on the networks of size 100. (B, F) In contrast to the indegree of target genes, the
outdegree of regulators does not affect the prediction confidence of their links. (D, H) Consequently, the slopes of the fitted lines are close to zero. There is no
significant correlation between the y-intercept and the slope. Thus, the regression done in the corresponding plots for the indegrees is not applicable here.
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Table S1. The identities and methods of the five top-performing teams in the DREAM3 in silico network inference challenge

Team name Members Affiliation Rank
Type of
method References

B Team Kevin Y. Yip, Roger P. Alexander,
Koon-Kiu Yan, and Mark Gerstein

Yale University, USA 1st on all sizes Statistical
method

(2)

USMtec347 Peng Li and Chaoyang Zhang University of Southern
Mississippi, USA

2nd on size 10,
2nd on size 50

Bayesian
network

-

Bonneau Aviv Madar, Alex Greenfield,
Eric Vanden-Eijnden, and Richard Bonneau

New York University, USA 2nd on size 100 Dynamical
model

(3, 4, 5)

Intigern Xuebing Wu, Feng Zeng, and Rui Jiang Tsinghua University, China 3rd on size 10,
3rd on size 100

Statistical
method

-

Zuma Tarmo Äijö and Harri Lähdesmäki Tampere University of Technology,
Finland

3rd on size 50 Dynamical
model

(6)
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